Skip to main content
Log in

Ab initio calculation of nitrogen oxide dimer structure and its anion-radical

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A comparative quantum chemical analysis has been made for the most stable dimer of nitrogen oxide with the structure cis-ONNO in a singlet state 1 A 1 by ab initio method of SCF MO LCAO, allowing for electron correlation according to Meller-Plesset perturbation theory of the second order (MP2), and density functional technique (DFT). The computations by MP2 method show anion-radical (ONNO) to have a strong bond between nitrogen atoms (N-N 1.44 Å) in contrast to molecular weakly bound cis-dimer with equilibrium distance N-N 2.23 Å. Molecular orbital structure of the dimer and its anions was examined that made it possible to suggest a reason of preferable stabilization of nitrogen oxide dimer in the cis-form. Calculated high affinity to electron (E a = −1.55-−1.69 eV) for the molecular dimer ONNO (1 A 1) explains an intense strengthening of N-N bond in anion-radical and confirms the experimental data on a possibility of surface anion-π-radical formation on electron donor centers. The DFT computations indicate that this technique poorly reproduces the experimental geometry and electron structure of the cis-dimer ONNO having predicted a triplet ground state with the equilibrium distance N-N ≈2 Å instead of a singlet one with N-N 2.26 Å. The comparison between MP2 and DFT calculations for complex dimer ONNO with copper cation reveals the energy state of the complex (Cu-O2N2)+ corresponding to stabilization of anion-π-radical (N2O2) {term-3 A 2, Cu(d)9-(ONNO)−1} to be highly overestimated by DFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Iwamoto, H. Yahiro, Y. Mine, et al., Chem. Lett., 213–216 (1989).

  2. M. Iwamoto and H. Hawada, Catal. Today., 10, 57–71 (1991).

    Article  CAS  Google Scholar 

  3. W. Held, A. Konig, T. Richter, and L. Puppe, SAE Tech. Pap. Ser. 900496, 13–18 (1990).

  4. B. L. Trout, A. K. Chakraborty, and A. T. Bell, J. Phys. Chem., 100, 17582–17592 (1996).

    Google Scholar 

  5. Y. Yokomichi and T. Yamabe, ibid., 14424–14427.

  6. R. Ramprasad, K. C. Hass, W. F. Schneider, and J. B. Adams, ibid., 101, 6903–6913 (1997).

    CAS  Google Scholar 

  7. A. L. L. Eaest, J. Chem. Phys., 109, 2185–2193 (1998).

    Article  Google Scholar 

  8. R. Sayos, R. Valero, J. M. Anglanda, and M. Gonzalez, ibid., 112, 6608–6624 (2000).

    Article  CAS  Google Scholar 

  9. J. K. Park and H. Sun, Chem. Phys., 263, 61–68 (2001).

    Article  CAS  Google Scholar 

  10. A. R. W. McKellar, J. K. G. Wayson, and B. J. Howard, Mol. Phys., 86, 273–279 (1995).

    Article  CAS  Google Scholar 

  11. N. G. Maksimov, V. K. Dudchenko, V. F. Anufrienko, et al., Teor. Eksperim. Khim., 14, No. 1, 53–58 (1978).

    CAS  Google Scholar 

  12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 92/DFT, Revision G. 2, Gaussian Inc., Pittsburgh (1993).

    Google Scholar 

  13. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 270–299 (1985).

    Article  CAS  Google Scholar 

  14. J. W. Ochterski, G. A. Petersson, and J. A. Montgomery, ibid., 104, 2598–2619 (1996).

    Article  CAS  Google Scholar 

  15. J. P. Perdew, Phys. Rev., B33, 8822–8824 (1986).

    Google Scholar 

  16. A. D. Becke, J. Chem. Phys., 98, 1372–1377 (1993).

    Article  CAS  Google Scholar 

  17. A. Snis and I. Panas, Chem. Phys., 221, 1–10 (1997).

    Article  CAS  Google Scholar 

  18. A. Stirling, L. Papai, J. Mink, and D. R. Salahub, J. Chem. Phys., 100, 2910–2923 (1994).

    Article  CAS  Google Scholar 

  19. H. A. Duart, E. Proynov, and D. R. Salahub, ibid., 109, 26–35 (1998).

    Article  Google Scholar 

  20. V. F. Anufrienko, N. N. Bulgakov, N. T. Vasenin, et al., Dokl. Ross. Akad. Nauk, 386, No. 6, 770–774 (2002).

    Google Scholar 

  21. V. F. Anufrienko, S. A. Yashnik, N. N. Bulgakov, et al., ibid., 392, No. 1, 67–71 (2003).

    Google Scholar 

  22. L. Chen, H. Y. Chen, J. Lin, and K. L. Tan, Inorg. Chem., 37, 5294–5298 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 by I. I. Zakharov, V. F. Anufrienko, O. I. Zakharova, S. A. Yashnik, and Z. R. Ismaguilov

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No.2, pp. 221–227, March–April, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, I.I., Anufrienko, V.F., Zakharova, O.I. et al. Ab initio calculation of nitrogen oxide dimer structure and its anion-radical. J Struct Chem 46, 213–219 (2005). https://doi.org/10.1007/s10947-006-0033-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-006-0033-1

Keywords

Navigation