Skip to main content
Log in

Exploring the Survival and Sudden Death of Quantum Correlations in an Open Atomic Laser System

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We focus our study on the quantum correlations of coupled photon pairs produced in an open atomic laser system, where quantum coherence is brought about by the superposition of a coherent atomic state and a coherent classical field. Quantum properties produced by photon–photon correlations are a long sought-after goal in quantum information science and technology, because photons combine at room temperature with high speed and long coherence times. The openness of the system under consideration allows quantum decoherence due to temperature and phase fluctuations to influence the quantum correlations generated. The competition between these quantum coherence and quantum decoherence leads to temporal quantum correlations, which we analyze using the time evolution of the density operator. Strong quantum correlations can be achieved by choosing an appropriate amplitude of the classical fields, treating temperature and phase fluctuations, and increasing the atomic injection rate over time. We also show that quantum entanglement is short-lived, quantum steering slowly decreases, but quantum discord increases with increasing heat bath temperature and atomic phase fluctuations. In this study, we explore the behavior of quantum correlations in an open atomic laser system and investigate the dynamics of entanglement, discord, and steering in this system and examine how they evolve over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Zygelman, A First Introduction to Quantum Computing and Information, Springer International Publishing, USA (2000).

    MATH  Google Scholar 

  2. C. H. Bennett and D. P. DiVincenzo, Nature, 404, 247 255 (2000).

  3. G. Benenti, G. Casati, D. Rossini, and G. Strini, Principles of Quantum Computation and Information, World Scientific Publishing Co., Singapore (2019).

    MATH  Google Scholar 

  4. A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys., 89, 041003 (2017).

    Article  ADS  Google Scholar 

  5. E. Mosisa, Adv. Math. Phys., 2021, 1 (2021); https://doi.org/10.1155/2021/6625690

    Article  MathSciNet  Google Scholar 

  6. M. Erhard, M. Krenn, and A. Zeilinger, Nat. Rev. Phys., 2, 365 (2020).

    Article  Google Scholar 

  7. F. Shahandeh, A. P. Lund, and T. C. Ralph, Phys. Rev. A, 99, 052303 (2019).

    Article  ADS  Google Scholar 

  8. M. Cuzminschi and A. Isar, Romanian J. Phys., 66, 112 (2021).

    Google Scholar 

  9. B. Deveaud, A. Quattropani, and P. Schwendimann, Quantum Coherence in Solid State Systems, UK, IOS Press (2009).

    Google Scholar 

  10. Z. Alessandro, J. Fiurášek, and M. Bellini, Nat. Photonics, 5, 52 (2011).

  11. X. Zhan, Phys. Rev. A, 103, 032437 (2021).

    Article  ADS  Google Scholar 

  12. T. Yoshiaki, M. Tanaka, N. Iwasaki, et al., Sci. Rep., 8, 1 (2018).

    Google Scholar 

  13. O. Kfir, Phys. Rev. Lett., 123, 103602 (2019).

    Article  ADS  Google Scholar 

  14. E. Darsheshdar, M. Hugbart, R. Bachelard, and C. J. Villas-Boas, Phys. Rev. A, 103, 053702 (2021).

    Article  ADS  Google Scholar 

  15. S. Mahmoodian, M. Cepulkovskis, S. Das, et al., Phys. Rev. Lett., 121, 143601 (2018).

    Article  ADS  Google Scholar 

  16. C. Gashu and T. Abebe, Phys. Scr., 95, 075105 (2020).

    Article  ADS  Google Scholar 

  17. G. K. Kitaeva, A. A. Leontyev, and P. A. Prudkovskii, Phys. Rev. A, 101, 053810 (2020).

    Article  ADS  Google Scholar 

  18. V. N. Chernega and O. V. Man’ko, J. Russ. Laser Res., 41, 1 (2020).

  19. S. Tesfa, Quantum Optical Processes: From Basics to Applications, Springer Nature, USA (2020).

    Book  Google Scholar 

  20. C. G. Feyisa, T. Abebe, T. Tessema, et al., J. Russ. Laser Res., 42, 1 (2021).

    Article  Google Scholar 

  21. S. Ullah, H. S. Qureshi, and F. Ghafoor, Opt. Express, 27, 26858 (2019).

    Article  ADS  Google Scholar 

  22. W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York (1973).

    MATH  Google Scholar 

  23. E. A. Sete, Phys. Rev. A, 84, 063808 (2011).

    Article  ADS  Google Scholar 

  24. S. Tesfa, Phys. Rev. A, 83, 023809 (2011).

    Article  ADS  Google Scholar 

  25. S. M. Barnett and P. M. Badmore, Methods in Theoretical Quantum Optics, Oxford University Press, New York (1997).

    Google Scholar 

  26. G. S. Agarwal, “Quantum Statistical Theories of Spontaneous Emission and their Relation to other Approaches,” in: G. H¨ohler (Ed.) Quantum Optics. Springer Tracts in Modern Physics, vol. 70, Springer, Berlin, Heidelberg (1974); https://doi.org/10.1007/BFb0042382

  27. Q. Y. He, Q. H. Gong, and M. D. Reid, Phys. Rev. Lett., 114, 060402 (2015).

    Article  ADS  Google Scholar 

  28. I. Kogias, R. A. Lee, S. Ragy, and G. Adesso, Phys. Rev. Lett., 114, 060403 (2015).

    Article  ADS  Google Scholar 

  29. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett., 84, 4002 (2000).

    Article  ADS  Google Scholar 

  30. K. Umemoto, Phys. Rev. D, 100, 126021 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Adesso and A. Datta, Phys. Rev. Lett., 105, 030501 (2010).

    Article  ADS  Google Scholar 

  32. J. S. Zhang and Ai-Xi Chen, Quantum Phys. Lett., 1, 69 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebisa Mosisa Kanea.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanea, E.M., Feyisa, C.G. Exploring the Survival and Sudden Death of Quantum Correlations in an Open Atomic Laser System. J Russ Laser Res 44, 489–503 (2023). https://doi.org/10.1007/s10946-023-10156-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10156-4

Keywords

Navigation