Skip to main content
Log in

Strongly-Entangled Twin Beams Produced by a Coherent Beat Laser Coupled to Thermal Reservoir

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Applying the combination of the master and stochastic differential equations, we investigate in detail a continuous-variable entanglement of the twin beam generated by the coherent beat laser containing a parametric amplifier and coupled to thermal light of an external environment. The dipole-forbidden transition of the three-level atoms are coupled by the initial coherent superposition and classical pumping light emerging from the parametric oscillator. The atomic coherence induced by the classical pumping field and the initial coherent superposition induce a strong correlation between the two-mode radiation, which results in a high degree of the photon entanglement. In addition, the parametric amplifier enhances the achievable degree of entanglement of the two-mode fields. On the other hand, thermal light appears to degrade entanglement but a strong photon entanglement can be generated by managing the amount of thermal noise entering into the laser cavity through the output mirror.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Zhao, Y. Chen, A. Zhang, et al., Nature, 430, 54 (2004).

    Article  ADS  Google Scholar 

  2. G. Burkard, J. Phys. Condens. Matter, 19, 233202 (2007).

  3. J. Hofmann, M. Krug, N. Ortegel, et al., Science, 337, 72 (2012).

    Article  ADS  Google Scholar 

  4. A. Einstein, B. Podolsky, and R. Rosen, Phys. Rev., 47, 777 (1935).

    Article  ADS  Google Scholar 

  5. S. Bell, J. Phys., 1, 195 (1964).

    Google Scholar 

  6. K. Heshami, D. G. England, P. C. Humphreys, et al., J. Mod. Opt., 63, 2005 (2016).

    Article  ADS  Google Scholar 

  7. C. H. Bennett and D. P. DiVincenzo, Nature, 404, 247 (2000).

    Article  ADS  Google Scholar 

  8. S. Barzanjeh, S. Pirandola, and C. Weedbrook, Phys. Rev. A, 88, 042331 (2013).

    Article  ADS  Google Scholar 

  9. J. G. Ren, P. Xu, H. L. Yong, et al., Nature, 549, 70 (2017).

    Article  ADS  Google Scholar 

  10. C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys., 89, 035002 (2017).

    Article  ADS  Google Scholar 

  11. C. W. Gardiner, Phys. Rev. Lett., 56, 1917 (1986).

    Article  ADS  Google Scholar 

  12. S. Qamar, S. Qamar, and M. S. Zubairy, Opt. Commun., 283, 781 (2010).

    Article  ADS  Google Scholar 

  13. C. Gashu, E. Mosisa, and T. Abebe, Adv. Math. Phys., 2020, 14 (2020).

    Article  Google Scholar 

  14. S. Tesfa, Phys. Rev. A, 79, 063815 (2009).

    Article  ADS  Google Scholar 

  15. N. A. Ansari, J. G. Banacloche, and M. S. Zubairy, Phys. Rev. A, 41, 5179 (1990).

    Article  ADS  Google Scholar 

  16. H. Xiong, M. O. Scully, and M. S. Zubairy, Phys. Rev. Lett., 94, 023601 (2005).

    Article  ADS  Google Scholar 

  17. T. Abebe, N. Gemechu, C. Gashu, et al., Int. J. Opt., 2020, 11 (2020).

    Article  Google Scholar 

  18. M. Kiffner, M. S. Zubairy, J. Evers, and C. H. Keitel, Phys. Rev. A, 75, 033816 (2007).

    Article  ADS  Google Scholar 

  19. C. Gashu and T. Abebe, Phys. Scr., 95, 075105 (2020).

    Article  ADS  Google Scholar 

  20. S. Tesfa, J. Phys. B: At. Mol. Opt. Phys., 40, 2373 (2007).

    Article  ADS  Google Scholar 

  21. A. C. Blockley and D. F. Walls, Phys. Rev. A, 43, 5049 (1991).

    Article  ADS  Google Scholar 

  22. T. Abebe and C. G. Feyisa, Braz. J. Phys., 50, 495 (2020).

    Article  ADS  Google Scholar 

  23. F. Kassahun, Fundamental of Quantum Optics, Lulu, North Caroline (2008).

    Google Scholar 

  24. G. New, Introduction to Nonlinear Optics, Cambridge University Press, New York (2011).

    Book  MATH  Google Scholar 

  25. T. Abebe, N. Gemechu, K. Shogile, et al., Rom. J. Phys., 65, 107 (2020).

    Google Scholar 

  26. E. Alebachew and K. Fesseha, Opt. Commun., 265, 314 (2006).

    Article  ADS  Google Scholar 

  27. C. G. Feyisa, Braz. J. Phys., 50, 379 (2020).

    Article  ADS  Google Scholar 

  28. W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York (1973).

    MATH  Google Scholar 

  29. L. Viola, E. Knill, and S. Lloyd, Phys. Rev., 82, 7417 (1999).

    Google Scholar 

  30. H. Jeong, J. Lee, and M. S. Kim, Phys. Rev. A, 61, 052101 (2000).

    Article  ADS  Google Scholar 

  31. C. G. Feyisa, T. Abebe, N. Gemechu, et al., J. Russ. Laser. Res., 41, 563 (2020).

    Article  Google Scholar 

  32. C. Gashu, Int. J. Opt., 2020, 3823916 (2020).

    Article  Google Scholar 

  33. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett., 84, 2722 (2000).

    Article  ADS  Google Scholar 

  34. A. Sumairi, S. N. Hazmin, and C. R. Ooi, J. Mod. Opt., 60, 589 (2013).

    Article  ADS  Google Scholar 

  35. G. Adesso, A. Serafini, and F. Illuminati, Phys. Rev. A, 70, 022318 (2004).

    Article  ADS  Google Scholar 

  36. S. Tesfa, Phys. Rev. A, 74, 043816 (2006).

    Article  ADS  Google Scholar 

  37. M. Hillery and M. S. Zubairy, Phys. Rev. Lett., 96, 050503 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  38. O. Jeff, Quantum Optics for Experimentalists, World Scientific, USA (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chimdessa Gashu Feyisa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feyisa, C.G., Abebe, T., Tessema, T. et al. Strongly-Entangled Twin Beams Produced by a Coherent Beat Laser Coupled to Thermal Reservoir. J Russ Laser Res 42, 1–19 (2021). https://doi.org/10.1007/s10946-020-09924-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09924-3

Keywords

Navigation