Skip to main content
Log in

Effect of Time Dependent Coupling on the Dynamical Properties of the Nonlocal Correlation Between Two Three-Level Atoms

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this article, we present the analytical solution for the pair of entangled two three-level atoms in the cascade configuration with and without the atomic motion effect. The effects of time dependent coupling and photon multiplicity on the evolution of the nonlocal correlation between the two atoms are examined. It is shown that the amount of atom-atom entanglement increases for one photon transition when the atomic motion effect is considered. Also, the entanglement between the two atoms decreases by increasing the photons multiplicity when the time dependent coupling effect is ignored. Finally, the results explored very important phenomena such as entanglement sudden death and entanglement sudden birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sete, E.A., Svidzinsky, A.A., Eleuch, H., Yang, Z., Nevels, R.D., Scully, M.O.: J. Mod. Opt. 57, 1311 (2010)

    Article  ADS  Google Scholar 

  2. Benenti, G., Casati, G., Strini, G.: Principles of quantum computation and information, volume II: basic tools and special topics. World Scientific, Singapore City (2007)

    Book  MATH  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  4. Ekert, A.: Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  5. Cirac, J.I., Gisin, N.: Phys. Lett. A 229, 1 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  6. Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu C.-S., Peres, A.: Phys. Rev. A 56, 1163 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  7. Stallings, W.: Cryptography and Network Security: Principles and Practice, 6th edn. Prentice Hall (2013)

  8. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  9. Weisbuch, C., Nishioka, M., Ishikawa, A., Arakawa, Y.: Phys. Rev. Lett. 69, 3314 (1992)

    Article  ADS  Google Scholar 

  10. Savona, V., Hadril, Z., Quattropani, A.: Phy. Rev. B 49, 877 (1994)

    ADS  Google Scholar 

  11. Eleuch, H.: Int. J. Mod. Phys. B 24, 5653 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. Obada, A.S. -F., Abdel-Khalek, S.: Physica A 389, 891 (2010)

    Article  ADS  Google Scholar 

  13. Abdel-Khalek, S., Nofal, T.A.: Physica A 390, 2626 (2011)

    Article  ADS  Google Scholar 

  14. Obada, A.S.-F., Abdel-Khalek, S., Plastino, A.: Physica A 390, 525 (2011)

    Article  ADS  Google Scholar 

  15. Abdel-Khalek, S.: Quantum Inf. Process. 12, 3761 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  16. Obada, A., Abdel-Khalek, S., Berrada, K., Shaheen, M. .: Physica A 392, 6624 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  17. Mancini, S., Giovannetti, V., Vitali, D., Tombesi, P.: Phys. Rev. Lett. 88, 120401 (2002)

    Article  ADS  Google Scholar 

  18. Zhang, J., Peng, K., Braunstein, S.L.: Phys. Rev. A 68, 013808 (2003)

    Article  ADS  Google Scholar 

  19. Pinard, M., Dantan, A., Vitali, D., Arcizet, O., Briant, T., Heidmann, A.: Europhys. Lett. 72, 747 (2005)

    Article  ADS  Google Scholar 

  20. Huang, S., Agarwal, G.S.: New J. Phys. 11, 103044 (2009)

    Article  ADS  Google Scholar 

  21. Sete, E.A., Eleuch, H.: Phys. Rev. A 89, 013841 (2014)

    Article  ADS  Google Scholar 

  22. Sete, E.A., Eleuch, H., Ooi, C.R.: J. Opt. Soc. Am. B 31, 2821 (2014)

    Article  ADS  Google Scholar 

  23. Yu, T., Eberly, J.H.: Science 323, 598 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  24. Yonace, M., Yu, T., Eberly, J.H.: J. Phys. B: At. Mol. Opt. Phys. 39, S621 (2006)

    Article  ADS  Google Scholar 

  25. Yonac, M., Eberly, J.H.: Phys. Rev. A 82, 022321 (2010)

    Article  ADS  Google Scholar 

  26. Joshi, Lawande, S.V.: Phys. Rev. A 48, 2276 (1993)

    Article  ADS  Google Scholar 

  27. Abdel-Khalek, S.: Open. Syst. Inf. Dyn. 22, 1550015 (2015)

    Article  MathSciNet  Google Scholar 

  28. Bose, S., Fuentes-Guridi, I., Knight, P.L., Vedral, V.: Phys. Rev. Lett. 87, 050401 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  29. Iwasawa, H., Matsuo, K.: Opt. Commun. 117, 550 (1995)

    Article  ADS  Google Scholar 

  30. Ng, K.M., Lo, C.F., Liu, K.L.: Eur. Phys. J. D 6, 119 (1999)

    Article  ADS  Google Scholar 

  31. Travěnec, I.: Phys. Rev. A 85, 043805 (2012)

    Article  ADS  Google Scholar 

  32. Singh, S.: Int. J. Theor. Phys. 51, 838 (2012)

    Article  Google Scholar 

  33. Eleuch, H., Rostovtsev, Y.V., Scully, M.O.: EPL 89, 50004 (2010)

    Article  ADS  Google Scholar 

  34. Manasreh, O.: Semiconductor heterojunctions and nanostructures. McGraw-Hill Professional, New York (2005)

    Google Scholar 

  35. Levine, R.D.: Quantum mechanics of molecular rate processes. Dover Publications, New York (1999)

    MATH  Google Scholar 

  36. Schleich, W.P.: Quantum optics in phase space. WILEY-VCH, Berlin (2001)

    Book  MATH  Google Scholar 

  37. Peres, A.: Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  38. Horodecki, P.: Phys. Lett. A 232, 333 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  39. Fujii, K., Higashida, K., Kato, R., Suzuki, T, Wada, Y.: arXiv:quant-ph/0403008 (2004)

  40. Eleuch, H., Gu ´erin, S., Jauslin, H.R.: Phys. Rev. A 85, 013830 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdel-Khalek.

Appendix A

Appendix A

In order to clarifying the derivations of (5) (i.e. the unitary operator) let us defined

$$ |1\rangle = \left(\begin{array}{lll} 1 \\ 0 \\ 0\end{array}\right) ,|2\rangle = \left(\begin{array}{lll} 0 \\ 1 \\ 0\end{array} \right)\text{ and\ \ }|3\rangle = \left(\begin{array}{lll} 0 \\ 0 \\ 1\end{array}\right) \text{.} $$
(24)

By product |1〉 column vector into row vector 〈1| we get the first matrix element

$$ S=|1\rangle \langle 1|= \left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \text{,} $$
(25)

as for as |i〉 〈j| = {.S ii ifi = jS ij ifij, i, j = 1, 2, 3. Therefor, we can rewrite the total Hamiltonian in (1) as follows

$$\begin{array}{@{}rcl@{}} \hat{H}_{tot} &=&\omega_{F_{1}}\hat{a}^{\dagger }\hat{a}+\sum \limits_{j=1}^{3}{{\Omega}_{j}^{A}}S_{jj}^{A}+\omega_{F_{2}}\hat{b}^{\dagger } \hat{b}+\sum\limits_{j=1}^{3}{\omega_{j}^{B}}S_{jj}^{B} \\ &&+f\left(z_{1}\right) \left\{ {\lambda_{1}^{A}}\left(\hat{a}^{k}S_{12}^{A}+ \hat{a}^{\dagger k}S_{21}^{A}\right) +{\lambda_{2}^{A}}\left(\hat{a} ^{k}S_{23}^{A}+\hat{a}^{\dagger k}S_{32}^{A}\right) \right\} \\ &&+f\left(z_{2}\right) \left\{ {g_{1}^{B}}\left(\hat{b}^{k}S_{12}^{B}+\hat{b} ^{\dagger k}S_{21}^{B}\right) +{g_{2}^{B}}\left(\hat{b}^{k}S_{23}^{B}+\hat{b} ^{\dagger k}S_{32}^{B}\right) \right\} . \end{array} $$
(26)

In order to study the atoms A-B entanglement we must find the total wave function \(|{\Psi }_{tot}\left (t\right ) \rangle \) and for more simplicity, we will calculate the unitary operator for the first atom A by using the Hamiltonian interaction as follows

$$\begin{array}{@{}rcl@{}} \hat{H}_{I}^{A} &=&{\lambda_{1}^{A}}\left(\hat{a}^{k}S_{12}^{A}+\hat{a} ^{\dagger k}S_{21}^{A}\right) +{\lambda_{2}^{A}}\left(\hat{a}^{k}S_{23}^{A}+ \hat{a}^{\dagger k}S_{32}^{A}\right) , \end{array} $$
(27)
$$\begin{array}{@{}rcl@{}} \hat{H}_{I}^{B} &=&{g_{1}^{B}}\left(\hat{b}^{k}S_{12}^{B}+\hat{b}^{\dagger k}S_{21}^{B}\right) +{g_{2}^{B}}\left(\hat{b}^{k}S_{23}^{B}+\hat{b}^{\dagger k}S_{32}^{B}\right) . \end{array} $$
(28)

where the normalization condition is satisfy \(\left [ \hat {H}_{I}^{A},\hat {H}_{I}^{B}\right ] =0,\) i.e. \(\hat {H}_{I}^{A}\) and \(\hat {H}_{I}^{B}\) are commute. Thus, the time-dependence Schrödinger wave equation is [39]

$$\begin{array}{@{}rcl@{}} i\hbar \frac{dU_{1}(t)}{dt} &=&f\left(z_{1}\right) \hat{H}_{I}^{A}U_{1}(t), \text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\left(\text{set }\hbar =1\right) \\ \ln U_{1}(t) &=&-i\gamma_{1}\left(t\right) \hat{H}_{I}^{A}+c\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\left(\text{put }c=0\right) \\ U_{1}(t) &=&e^{-i\gamma_{1}\left(t\right) \hat{H}_{I}^{A}}. \end{array} $$
(29)

This is unitary operator for the atom A, consider

$$ \hat{H}_{I}^{A}={\lambda_{1}^{A}}\left(\hat{a}^{k}S_{12}^{A}+\hat{a} ^{\dagger k}S_{21}^{A}\right) +{\lambda_{2}^{A}}\left(\hat{a}^{k}S_{23}^{A}+ \hat{a}^{\dagger k}S_{32}^{A}\right) =L, $$
(30)

hence

$$ L= \left(\begin{array}{ccc} 0 & \lambda_{1}\hat{a}^{k} & 0 \\ \lambda_{1}\hat{a}^{\dagger k} & 0 & \lambda_{2}\hat{a}^{k} \\ 0 & \lambda_{2}\hat{a}^{\dagger k} & 0 \end{array}\right) , $$
(31)
$$\begin{array}{@{}rcl@{}} L^{2} &=& \left(\begin{array}{ccc} (\lambda_{1})^{2}\hat{a}^{k}\hat{a}^{\dagger k} & 0 & \lambda_{1}\lambda_{2}\hat{a}^{2k} \\ 0 & (\lambda_{1})^{2}\hat{a}^{\dagger k}\hat{a}^{k}+(\lambda_{2})^{2}\hat{a }^{k}\hat{a}^{\dagger k} & 0 \\ \lambda_{1}\lambda_{2}\hat{a}^{\dagger 2k} & 0 & (\lambda_{2})^{2}\hat{a} ^{\dagger k}\hat{a}^{k} \end{array}\right) \\ &=& \left(\begin{array}{ccc} (\lambda_{1})^{2}\frac{\left(n_{1}+k\right) !}{n_{1}!} & 0 & \lambda_{1}\lambda_{2}\hat{a}^{2k} \\ 0 & \frac{(\lambda_{1}n_{1}!)^{2}+(\lambda_{2})^{2}\left(n_{1}+k\right) !\left(n_{1}-k\right) !}{n_{1}!\left(n_{1}-k\right) !} & 0 \\ \lambda_{1}\lambda_{2}\hat{a}^{\dagger 2k} & 0 & (\lambda_{2})^{2}\frac{ n_{1}!}{\left(n_{1}-k\right) !} \end{array}\right) \end{array} $$
(32)
$$ L^{3}= \left(\begin{array}{ccc} x_{1} & 0 & 0 \\ 0 & x_{2} & 0 \\ 0 & 0 & x_{3} \end{array}\right) \cdot L=DL, $$
(33)

where

$$\begin{array}{@{}rcl@{}} x_{1} &=&\left[ \frac{\left\{ \lambda_{1}\left(n_{1}+k\right) !\right\}^{2}+(\lambda_{2})^{2}n_{1}!\left(n_{1}+2k\right) !}{n_{1}!\left(n_{1}+k\right) !}\right] , \\ x_{2} &=&\left[ \frac{(\lambda_{1}n_{1}!)^{2}+(\lambda_{2})^{2}\left(n_{1}+k\right) !\left(n_{1}-k\right) !}{n_{1}!\left(n_{1}-k\right) !} \right] , \\ x_{3} &=&\left[ \frac{\left\{ \lambda_{1}\left(n_{1}-k\right) !\right\} ^{2}+(\lambda_{2})^{2}n_{1}!\left(n_{1}-2k\right) !}{\left(n_{1}-k\right) !\left(n_{1}-2k\right) !}\right] , \end{array} $$
(34)

and D is the diagonal matrix. Now, we can generalized the diagonal matrix as follows [39]

$$ L^{2j}=D^{j-1}L^{2}\text{\ \ for \ }j\geqslant 1\text{, }L^{2j+1}=D^{j}L \text{\ \ for \ }j\geqslant 0. $$
(35)

Now, we can rewrite \(U_{1}\left (t\right ) \) as follows

$$\begin{array}{@{}rcl@{}} U_{1}\left(t\right) &=&e^{-i\hat{H}_{I}^{A}}=e^{-iL\gamma_{1}\left(t\right) } \\ &=&\sum\limits_{j=0}^{\infty }\frac{\left(-iL\gamma_{1}\left(t\right) \right)^{2j}}{\left(2j\right) !}+\sum\limits_{j=0}^{\infty }\frac{\left(-iL\gamma_{1}\left(t\right) \right)^{2j+1}}{\left(2j+1\right) !} \\ &=&\sum\limits_{j=0}^{\infty }\left(-1\right)^{j}\frac{\left(L\gamma_{1}\left(t\right) \right)^{2j}}{\left(2j\right) !}-i\sum\limits_{j=0}^{\infty }\left(-1\right)^{j}\frac{\left(L\gamma_{1}\left(t\right) \right)^{2j+1}}{\left(2j+1\right) !} \\ &=&I+\frac{1}{D}\sum\limits_{j=1}^{\infty }\left(-1\right)^{j}\frac{\left(\gamma_{1}\left(t\right) \sqrt{D}\right)^{2j}}{\left(2j\right) !}L^{2}- \frac{i}{\sqrt{D}}\sum\limits_{j=0}^{\infty }\left(-1\right)^{j}\frac{ \left(\gamma_{1}\left(t\right) \sqrt{D}\right)^{2j+1}}{\left(2j+1\right) !}L \\ &=&I+\frac{1}{D}\left\{ -1+\cos \left(\gamma_{1}\left(t\right) \sqrt{D} \right) \right\} L^{2}-\frac{i}{\sqrt{D}}\sin \left(\gamma_{1}\left(t\right) \sqrt{D}\right) L, \end{array} $$
(36)

thus

$$\begin{array}{@{}rcl@{}} U_{1}\left(t\right) &=& \left(\begin{array}{ccc} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{array}\right) \\ &=& \left(\begin{array}{ccc} u_{11} & -i\lambda_{1}F_{n_{1}}\hat{a}^{k} & \lambda_{1}\lambda_{2}D_{n_{1}}\hat{a}^{2k} \\ -i\lambda_{1}S_{n_{1}}\hat{a}^{\dagger k} & C_{n_{1}} & -i\lambda_{2}S_{n_{1}}\hat{a}^{k} \\ \lambda_{1}\lambda_{2}Y_{n_{1}}\hat{a}^{\dagger 2k} & -i\lambda_{2}Z_{n_{1}}\hat{a}^{\dagger k} & r_{11} \end{array}\right) ,\end{array} $$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Khalek, S., A. Halawani, S.H. & Obada, AS.F. Effect of Time Dependent Coupling on the Dynamical Properties of the Nonlocal Correlation Between Two Three-Level Atoms. Int J Theor Phys 56, 2898–2910 (2017). https://doi.org/10.1007/s10773-017-3457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3457-9

Keywords

Navigation