Skip to main content
Log in

Geometric Measures of Quantum Correlations in a Two-Qubit Heisenberg XXZ Model Under Multiple Interactions Effects

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We investigate the dynamics of nonclassical correlations in a two-qubit one-dimensional XXZ Heisenberg spin-1/2 pair, which is subjected to the combined effect of Calogero-Moser (CM), Dzyaloshinsky-Moriya (DM), and Kaplan, Shekhtman, Entin-Wohlman and Aharony (KSEA) interactions under the influence of an external magnetic field. Using the Bures distance as a thermal entanglement quantifier and the trace distance discord (TDD) as nonclassical-correlation quantifier, we quantitatively measure the amount of quantum correlations in the corresponding thermal state of the two-qubit Heisenberg pair. Behaviors of the two geometric quantifiers are examined and analyzed in detail. We show that the characteristics of the quantum correlation quantifiers are strongly dependent on the magnitudes of the individual interactions, as well as on the magnetic field strength. Further, we observe that the quantum correlations in the two-qubit system can be adequately protected by tuning the amplitudes of the DM and KSEA interactions. We also found that both quantifiers behave similarly as a function of various parameters characterizing the system under consideration and that TDD can reveal some nonclassical correlations in the two-qubit Heisenberg XXZ spin pair that are not captured by the Bures norm entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, MS (2000).

    MATH  Google Scholar 

  2. R. Horodecki, P. Horodecki, and K. Horodecki, Rev. Mod. Phys., 81, 865 (2000).

    Article  ADS  Google Scholar 

  3. M. Mansour and Z. Dahbi, Int. J. Theor. Phys., 59, 3876 (2020).

    Article  Google Scholar 

  4. O. Gühne and G. Tóth, Phys. Rep., 474, 1 (2009).

  5. D. Bouwmeester, J. W. Pan, K. Mattle, and M. Eibl, Nature, 390, (575) (1997).

    Article  ADS  Google Scholar 

  6. M. Mansour and Z. Dahbi, Laser Phys., 30, 085201 (2020).

  7. M. Mansour, M. Daoud, and Z. Dahbi, Int. J. Theor. Phys., 59, 895 (2020).

    Article  Google Scholar 

  8. M. Mansour, Z. Dahbi, M. Essakhi, and A. Salah, Int. J. Theor. Phys., 60, 2156 (2021).

    Article  Google Scholar 

  9. M. Mansour and M. Daoud, Mod. Phys. Lett. B, 33, 195054 (2019).

  10. S. Elghaayda, Z. Dahbi, and M. Mansour, Opt. Quantum Electron., 54, 1 (2022).

    Article  Google Scholar 

  11. O. Achkir, M. Daoud, and M. Mansour, Mod. Phys. Lett. B, 31, 1750183 (2017).

    Article  ADS  Google Scholar 

  12. W. K. Wootters, Phys. Rev. Lett., 80, 2245 (1998).

    Article  ADS  Google Scholar 

  13. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett., 78, 2275 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  14. W. K. Wootters, Quantum Inf. Comput., 1, 27 (2001).

    MathSciNet  Google Scholar 

  15. G. Vidal and R. F. Werner, Phys. Rev. A, 65, 032314 (2002).

  16. V. Vedral, Rev. Mod. Phys., 74, 197 (2002).

    Article  ADS  Google Scholar 

  17. S. Haddadi and M. Bohloul, Int. J. Theor. Phys., 57, 3912 (2018).

    Article  Google Scholar 

  18. A. Streltsov, “Quantum correlations beyond entanglement,” in: Quantum Correlations Beyond Entanglement, Springer (2015), p. 17.

  19. H. Ollivier and W. H. Zurek, Phys. Rev. Lett., 88, 017901 (2001).

  20. L. Henderson and V. Vedral, J. Phys. A: Math. Gen., 34, 6899 (2001).

    Article  ADS  Google Scholar 

  21. B. Daki, V. Vedral, and A. E. Brukner, Phys. Rev. Lett., 105, 190502 (2010).

  22. S. Luo and S. Fu, Phys. Rev. A, 82, 034302 (2010).

  23. A. S. M. Hassan, B. Lari, and P. S. Joag, Phys. Rev. A, 85, 024302 (2012).

  24. F. Ciccarello, T. Tufarelli, and V. Giovannetti, New J. Phys., 16, 013038 (2014).

  25. F. Paula, T. R. de Oliveira, and M. Sarandy, Phys. Rev. A, 87, 064101 (2013).

  26. T. Debarba, T. O. Maciel, and R. O. Vianna, Phys. Rev. A, 86, 024302 (2012).

  27. J. Montealegre, F. Paula, and M. Sarandy, Phys. Rev. A, 87, 042115 (2013).

  28. T. Yu and J. H. Eberly, Science, 323, 598 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Rigolin, Int. J. Quantum Inf., 2, 393 (2004).

    Article  Google Scholar 

  30. M. Asoudeh and V. Karimipour, Phys. Rev. A, 71, 022308 (2005).

  31. D. Park, Quantum Inf. Process., 18, 1 (2019).

    Article  Google Scholar 

  32. M. Qin, Y. B. Li, and F. P. Wu, Quantum Inf. Process., 13, 1573 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Essakhi, Y. Khedif, M. Mansour, and M. Doud, Opt. Quantum Electron., 54, 103 (2022).

    Article  Google Scholar 

  34. I. Dzyaloshinsky, J. Phys. Chem. Solids, 4, 241 (1958).

    Article  ADS  Google Scholar 

  35. T. Moriya, Phys. Rev., 120, 91 (1960).

    Article  ADS  Google Scholar 

  36. D. C. Li and Z. L. Cao, Eur. Phys. J. D, 50, 207 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  37. M. R. Pourkarimi, Int. J. Theor. Phys., 57, 1158 (2018).

    Article  Google Scholar 

  38. T. Kaplan, Zeitschrift für Physik B, Condens. Matter, 49, 313 (1983).

  39. L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev. Lett., 69, 836 (1992).

    Article  ADS  Google Scholar 

  40. L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev. B, 71, 468 (1993).

    ADS  Google Scholar 

  41. A. Zheludev, S. Maslov, I. Zaliznyak, et al., Phys. Rev. Lett., 81, 5410 (1998).

    Article  ADS  Google Scholar 

  42. T. Yildirim, A. B. Harris, A. Aharony, and O. Entin-Wohlman, Phys. Rev. B, 52, 10239 (1995).

    Article  ADS  Google Scholar 

  43. M. A. Yurischev, Quantum Inf. Process., 19, 1 (2020).

    Article  MathSciNet  Google Scholar 

  44. F. Calogero, J. Math. Phys., 10, 2197 (1969).

    Article  ADS  Google Scholar 

  45. P. Calogero, O. Ragnisco, and C. Marchioro, Lett. Nuovo Cim., 13, 383 (1975).

    Article  Google Scholar 

  46. B. Sutherland, J. Math. Phys., 12, 246 (1971).

    Article  ADS  Google Scholar 

  47. J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations,” in: Surveys in Applied Mathematics, Elsevier (1976), p. 235.

  48. J. Gibbons and T. Hermsen, Physica D, 11, 337 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Wojciechowski, Phys. Lett. A, 111, 101 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  50. F. D. M. Haldane, Phys. Rev. Lett., 61, 2015 (1988).

    Article  ADS  Google Scholar 

  51. B. S. Shastry, Phys. Rev. Lett., 60, 639 (1988).

    Article  ADS  Google Scholar 

  52. X. Ma, Y. Qiao, G. Zhao, and A. Wang, Sci. China Phys. Mech. Astron., 56, 600 (2013).

    Article  ADS  Google Scholar 

  53. S. D. Han, T. Tüfekçi, and E. Aydiner, Int. J. Theor. Phys., 56, 1474 (2017).

  54. A. Sbiri, M. Oumennana, and M. Mansour, Mod. Phys. Lett. B, 36, 2150618 (2022).

    Article  ADS  Google Scholar 

  55. S. Ahadpour and F. Mirmasoudi, Rev. Mex. Fís., 66, 692 (2020).

    Article  Google Scholar 

  56. D. Bures, Trans. Am. Math. Soc., 135, 199 (1969).

    Google Scholar 

  57. A. Uhlmann, Rep. Math. Phys., 9, 273 (1976).

    Article  ADS  Google Scholar 

  58. A. Uhlmann, Rep. Math. Phys., 36, 461 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  59. S. Alexander, K. Hermann and D. Brus, New J. Phys., 12, 123004 (2010).

  60. T. C. Wei and P. M. Goldbart, Phys. Rev. A, 68, 042307 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mansour.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oumennana, M., Dahbi, Z., Mansour, M. et al. Geometric Measures of Quantum Correlations in a Two-Qubit Heisenberg XXZ Model Under Multiple Interactions Effects. J Russ Laser Res 43, 533–545 (2022). https://doi.org/10.1007/s10946-022-10079-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10079-6

Keywords

Navigation