Skip to main content
Log in

Randomized Entangled Mixed States from Phase States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We construct randomized entangled mixed states by using the formalism of phase states for d-dimensional systems (qudits). The randomized entangled mixed states are a special kind of mixed states that exhibit genuine multipartite correlation. Such states are obtained by the application of randomized entangling operators to an arbitrary pair of qudits of a multiqudit system. The study of the entanglement of randomized mixed states is of great importance in quantum computation since any experimental implementation of entangled states in a realistic environment can be made by imperfect entangling gates. We give a brief review of some necessary background about unitary phase operators and phase states of a multi-qudit system. Evolved density matrices arise when qudits of the multi-qudit system interact via a Hamiltonian of Heisenberg type. The randomized entangled states associated with evolved density matrices are derived via the action of an entangling operator on a pair of two qudits {i, j} of the multi-qudit system with some probability p. The randomized entangled mixed states for bipartite, tripartite and multipartite systems are explicitly expressed and their Kraus decomposition properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Vedral, V.: . Rev. Mod. Phys. 74, 197 (2002)

    ADS  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: . Rev. Mod. Phys. 81, 865 (2009)

    ADS  Google Scholar 

  4. Gühne, O., Tóth, G.: . Phys. Rep. 474, 1 (2009)

    ADS  MathSciNet  Google Scholar 

  5. Mohamed, A.-B., Eleuch, H.: . Eur. Phys. J. D 69, 191 (2015)

    ADS  Google Scholar 

  6. Berrada, K., Abdel-Khalek, S., Eleuch, H., et al.: . Quantum Inf Process 12, 69 (2013)

    ADS  MathSciNet  Google Scholar 

  7. Sete, E.A., Eleuch, H., Das, S: . Phys. Rev. A 84, 053817 (2011)

    ADS  Google Scholar 

  8. Coffman, V., Kundu, J., Wootters, W.K.: . Phys. Rev. A 61, 2000(05) (2306)

    Google Scholar 

  9. Ganczarek, W., Kus, M., Zyczkowski, K.: . Phys. Rev. A 85(03), 2012 (2314)

    Google Scholar 

  10. Brierley, S., Higuchi, A.: . J. Phys. A: Math. Theor. 40, 8455 (2007)

    ADS  Google Scholar 

  11. Facchi, P., Florio, G., Parisi, G., Pascazio, S.: . Phys. Rev. A 77, 060304 (2008)

    ADS  MathSciNet  Google Scholar 

  12. Gour, G., Wallach, N.R.: . J. Math. Phys 51(11), 112201 (2010)

    ADS  MathSciNet  Google Scholar 

  13. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: . Phys. Rev. Lett 93, 230501 (2004)

    ADS  Google Scholar 

  14. Mintert, F., Kus, M., Buchleitner, A.: . Phys. Rev. Lett 92, 167902 (2004)

    ADS  Google Scholar 

  15. Love, P.J., Van den Brink, A.M., Smirnov, A. Y. u., Amin, M.H.S., Grajcar, M., Ilichev, E., Izmalkov, A., Zagoskin, A.M.: . Quantum. Inf. Process. 6, 187 (2007)

    MathSciNet  Google Scholar 

  16. Meyer, D.A., Wallach, N.R.: . J. Math. Phys. 43, 4273 (2002)

    ADS  MathSciNet  Google Scholar 

  17. Brennen, G.K.: . Quantum. Inf. Comput. 3, 619 (2003)

    MathSciNet  Google Scholar 

  18. Qun, G.Q., Chen, X.Y., Yun, W.Y.: . Chin. Phys. B 23, 050309 (2014)

    Google Scholar 

  19. Scott, A.J.: . Phys. Rev. A 69, 052330 (2004)

    ADS  Google Scholar 

  20. Haddadi, S, Bohloul, M: . Int. J. Theor. Phys. 57, 3912–3916 (2018)

    Google Scholar 

  21. Pegg, D.T., Barnett, S.M.: . Phys. Rev. A 39, 1665 (1989)

    ADS  Google Scholar 

  22. Vourdas, A.: . Phys. Rev. A 41, 1653 (1990)

    ADS  Google Scholar 

  23. Ellinas, D.: . Phys. Rev. A 45, 3358 (1992)

    ADS  MathSciNet  Google Scholar 

  24. Daoud, M., Kibler, M.R.: . J. Phys. A: Math. Theor. 43, 115303 (2010)

    ADS  Google Scholar 

  25. Vourdas, A.: . Phys. Scr. 48, 84 (1993)

    Google Scholar 

  26. de Guise, H., Vourdas, A., Sánchez-Soto, L.L.: . J. Physics A: Math. Theor. 45, 244030 (2012)

    ADS  Google Scholar 

  27. Wu, J.-Y., Rossi, M, Kampermann, H, Severini, S, Kwek, LC, Macchiavello, C, Bruß, D: . Phys. Rev. A 89, 052335 (2014)

    ADS  Google Scholar 

  28. Lim, Y.L, Beige, A., Kwek, L.C.: Repeat-until-success linear optics distributed quantum computing. Phys. Rev. Lett. 95(3), 030505 (2005)

    ADS  Google Scholar 

  29. Lim, Y.L, Barrett, S.D., Beige, A., Kok, P., Kwek, L.C.: Repeat-until-success quantum computing using stationary and ying qubits. Phys. Rev. A 73(1), 012304 (2006)

    ADS  Google Scholar 

  30. Beige, A, Lim, YL, Kwek, LC: A repeat-until-success quantum computing scheme. J. Phys. 9(6), 197 (2007)

    Google Scholar 

  31. Mansour, M., Daoud, M., Bouhouch, L.: . Int. J. Quant. Inf. 17(1), 1950009 (2019)

    Google Scholar 

  32. Plato, A.D.K., Dahlsten, O.C., Plenio, M.B.: . Phys. Rev. A 78, 042332 (2008)

    ADS  Google Scholar 

  33. Mansour, M., Daoud, M.: Int. J. of Mod. Phys. B, 31 (2017)

  34. Achkir, O., Daoud, M., Mansour, M.: . Mod. Phys. Let. B 2017, 31 (2017)

    Google Scholar 

  35. Preskill, J.: Lecture Notes on Quantum Information and Quantum Computation at www.theory.caltech.edu/people/preskill/ph229

  36. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  37. Kraus, K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983)

    MATH  Google Scholar 

  38. Cavalcanti, D, Chaves, R, Aolita, L, Davidovich, L, Acín, A: . Phys. Rev. Lett. 103, 030502 (2009). Published 15 July

    ADS  Google Scholar 

  39. Aolita, L., Cavalcanti, D., Chaves, R., Dhara, C., Davidovich, L., Acin, A.: . Phys. Rev. A 82, 032317 (2010)

    ADS  Google Scholar 

  40. Wunderlich, H., Virmani, S., Plenio, M.B.: . J. Phys. 12, 083026 (2010)

    Google Scholar 

  41. Mansour, M., Daoud, M.: Entangled thermal mixed states for multi-qubit Systems May 2019 Modern Physics Letters B 33(22)

    ADS  MathSciNet  Google Scholar 

  42. Daoud, M., Kibler, M.R.: . J. Math. Phys. 52, 082101 (2011)

    ADS  MathSciNet  Google Scholar 

  43. L’evy-Leblond, J.M.: . Rev. Mex. Fis. 22, 17 (1973)

    Google Scholar 

  44. Sanders, B.C., Milburn, G.J.: . Phys. Rev. Lett. 75, 2944 (1995)

    ADS  Google Scholar 

  45. Spengler, C., Kraun, B.: . Phys. Rev. A 88, 052323 (2013)

    ADS  Google Scholar 

  46. Cui, SX, Yu, N, Zeng, B: . J. Math. Phys. 56, 072201 (2015)

    ADS  MathSciNet  Google Scholar 

  47. Markham, D., Sanders, B.C.: . Phys. Rev. A 78, 042309 (2008)

    ADS  MathSciNet  Google Scholar 

  48. Looi, S.Y., Yu, L., Gheorghiu, V., Griffiths, R.B.: . Phys. Rev. A 78, 042303 (2008)

    ADS  Google Scholar 

  49. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: . Phys. Rev. A 82, 062315 (2010)

    ADS  Google Scholar 

  50. Hein, M., Eisert, J., Briegel, H.J.: . Phys. Rev. A 69(06), 2004 (2311)

    Google Scholar 

  51. Hein, M, Dur, W, Eisert, J, Raussendorf, R, Nest, M, Briegel, H.-J.: Entanglement in graph states and its applications. arXiv:quant-ph/0602096 (2006)

  52. Arnaud, L., Cerf, N.: . Phys. Rev. A 87, 012319 (2013)

    ADS  Google Scholar 

  53. Goyeneche, D., Zyczkowski, K.: . Phys. Rev. A 90, 022316 (2014)

    ADS  Google Scholar 

  54. Eleuch, H, Rotter, I: . Eur. Phys. J. D 69, 230 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mansour.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, M., Daoud, M. & Dahbi, Z. Randomized Entangled Mixed States from Phase States. Int J Theor Phys 59, 895–907 (2020). https://doi.org/10.1007/s10773-019-04375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04375-2

Keywords

Navigation