Skip to main content
Log in

Exact wave functions for generalized harmonic oscillators

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We transform the time-dependent Schrödinger equation for the most general variable quadratic Hamiltonians into a standard autonomous form. As a result, the time evolution of exact wave functions of generalized harmonic oscillators is determined in terms of the solutions of certain Ermakov and Riccatitype systems. In addition, we show that the classical Arnold transform is naturally connected with Ehrenfest’s theorem for generalized harmonic oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Berry, J. Phys. A: Math. Gen., 18, 15 (1985).

    Article  ADS  MATH  Google Scholar 

  2. R. Cordero-Soto, E. Suazo, and S. K. Suslov, Ann. Phys., 325, 1884 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Int. J. Theor. Phys., 14, 37 (1975).

    Article  MathSciNet  Google Scholar 

  4. V. V. Dodonov and V. I. Man’ko, “Invariants and correlated states of nonstationary quantum systems,” in: Invariants and the Evolution of Nonstationary Quantum Systems, Proceedings of Lebedev Physics Institute [in Russian], Nauka, Moscow (1987), Vol. 183, p. 71 [English translation published by Nova Science, Commack, New York (1989), p. 103].

  5. L. D. Faddeev, Teor. Mat. Fiz., 1, 3 (1969).

    MathSciNet  Google Scholar 

  6. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw–Hill, New York (1965).

    MATH  Google Scholar 

  7. J. H. Hannay, J. Phys. A: Math. Gen, 18, 221 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  8. P. G. L. Leach, J. Phys. A: Math. Gen., 23, 2695 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. C. F. Lo, Europhys. Lett., 24, 319 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  10. I. A. Malkin and V. I. Man’ko, Dynamic Symmetries and Coherent States of Quantum System [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  11. S. Menouar, M. Maamache, and J. R. Choi, Ann. Phys., 1708 (2010).

  12. K. B. Wolf, SIAM J. Appl. Math., 40, 419 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  13. K-H. Yeon, K-K. Lee, Ch-I. Um, et al., Phys. Rev. A, 48, 2716 (1993).

    Article  ADS  Google Scholar 

  14. A. V. Zhukov, Phys. Lett. A, 256, 325 (1999).

    Article  ADS  Google Scholar 

  15. R. Cordero-Soto, R. M. Lopez, E. Suazo, and S. K. Suslov, Lett. Math. Phys., 84, 159 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. M. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge (1991).

    Book  MATH  Google Scholar 

  17. P. A. Clarkson, Proc. Roy. Soc. Edinburg, 109 A, 109 (1988).

    Article  MathSciNet  Google Scholar 

  18. M. Craddock, J. Differ. Eqs., 207, 2538 (2009).

    Article  MathSciNet  Google Scholar 

  19. L. Gagnon and P. Winternitz, J. Phys. A: Math. Gen., 26, 7061 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. W Miller, Jr., “Symmetry and separation of variables,” in: Encyclopedia of Mathematics and Its Applications, Addison-Wesley Publishing Company, Reading (1977), Vol. 4.

    Google Scholar 

  21. S. Rosencrans, J. Math. Anal. Appl., 56, 317 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Suazo, S. K. Suslov, and J. M. Vega-Guzmán, New York J. Math., 17a, 225 (2011).

    MATH  Google Scholar 

  23. E. Suazo, S. K. Suslov, and J. M. Vega-Guzmán, “The Riccati system and a diffusion-type equation,” arXiv:1102.4630v1 [math-ph] 22 Feb 2011.

  24. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys., 71, 463 (1999).

    Article  ADS  Google Scholar 

  25. Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev. A, 54, R1753 (1996).

    Article  ADS  Google Scholar 

  26. Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev. A, 55, R18 (1997).

    Article  ADS  Google Scholar 

  27. Yu. S. Kivshar, T. J. Alexander, and S. K. Turitsyn, Phys. Lett. A, 278, 225 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. A. Kundu, Phys. Rev. E, 79, 015601(R) (2009).

    Article  MathSciNet  ADS  Google Scholar 

  29. V. M. Pérez-García, P. Torres, and G. D. Montesinos, SIAM J. Appl. Math., 67, 990 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Suazo and S. K. Suslov, “Soliton-like solutions for nonlinear Schr¨odinger equation with variable quadratic Hamiltonians,” arXiv:1010.2504v4 [math-ph] 24 Nov 2010.

  31. S. K. Suslov, “On integrability of nonautonomous nonlinear Schr¨odinger equations” (Proc. Am. Math. Soc., in press) [arXiv:1012.3661v3 [math-ph] 16 Apr 2011].

  32. R. Cordero-Soto, E. Suazo, and S. K. Suslov, J. Phys. Math., 1, S090603 (2009).

    Article  Google Scholar 

  33. R. P. Feynman, The Principle of Least Action in Quantum Mechanics, Ph.D. Thesis, Princeton University (1942) [reprinted in: L. M. Brown (Ed.), Feynman’s Thesis – A New Approach to Quantum Theory, World Scientific Publishers, Singapore (2005), p. 1].

  34. R. Cordero-Soto and S. K. Suslov, Theor. Math. Phys., 162, 286 (2010) [arXiv:0808.3149v9 [mathph] 8 Mar 2009].

    Article  MathSciNet  MATH  Google Scholar 

  35. R. P. Feynman, Rev. Mod. Phys., 20, 367 (1948) [reprinted in: L. M. Brown (Ed.), Feynman’s Thesis – A New Approach to Quantum Theory, World Scientific Publishers, Singapore (2005), p. 71].

    Article  MathSciNet  ADS  Google Scholar 

  36. R. M. Lopez and S. K. Suslov, Rev. Mex. Fís., 55, 195 (2009) [arXiv:0707.1902v8 [math-ph] 27 Dec 2007].

    MathSciNet  Google Scholar 

  37. M. Meiler, R. Cordero-Soto, and S. K. Suslov, J. Math. Phys., 49, 072102 (2008) [arXiv: 0711.0559v4 [math-ph] 5 Dec 2007].

    Article  MathSciNet  ADS  Google Scholar 

  38. E. Suazo and S. K. Suslov, “Cauchy problem for Schrödinger equation with variable quadratic Hamiltonians” (in preparation).

  39. N. Lanfear and S. K. Suslov, “The time-dependent Schrödinger equation, Riccati equation and Airy functions,” arXiv:0903.3608v5 [math-ph] 22 Apr 2009.

  40. R. Cordero-Soto and S. K. Suslov, J. Phys. A: Math. Theor., 44, 015101 (2011) [arXiv:1006.3362v3 [math-ph] 2 Jul 2010].

    Article  MathSciNet  ADS  Google Scholar 

  41. S. K. Suslov, Phys. Scr., 81, 055006 (2010) [arXiv:1002.0144v6 [math-ph] 11 Mar 2010].

    Article  ADS  Google Scholar 

  42. G. N. Watson, A Treatise on the Theory of Bessel Functions, Second Edition, Cambridge University Press, Cambridge, MS (1944).

    MATH  Google Scholar 

  43. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth Edition, Cambridge University Press, Cambridge, MS (1927).

    MATH  Google Scholar 

  44. V. P. Ermakov, Second-order differential equations. Conditions of complete integrability, Izv. Univ. Kiev, Series III, 9, 1 (1880) [English translation: Appl. Anal. Discrete Math., 2, 123 (2008)].

    Article  MathSciNet  MATH  Google Scholar 

  45. P. G. L. Leach and K. Andriopoulos, Appl. Anal. Discrete Math., 2, 146 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Flügge, Practical Quantum Mechanics, Springer-Verlag, Berlin (1999).

    MATH  Google Scholar 

  47. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, Pergamon Press, Oxford (1977).

    Google Scholar 

  48. E. Merzbacher, Quantum Mechanics, Third Edition, John Wiley & Sons, New York (1998).

    Google Scholar 

  49. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag, Berlin, New York (1991).

    MATH  Google Scholar 

  50. A. Erdélyi, Higher Transcendental Functions, McGraw–Hill (1953), Vols. I–III.

  51. A. Erdélyi, Tables of Integral Transforms, McGraw–Hill (1954), Vols. I, II.

  52. J. F. Cariñena and J. de Lucas, Phys. Lett. A, 372, 5385 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, Berlin, Cambridge (1998).

    Google Scholar 

  54. V. Aldaya, F. Cossio, J. Guerrero, and F. F. López-Ruiz, J. Phys. A: Math. Theor., 44, 065302 (2011).

    Article  ADS  Google Scholar 

  55. J. Guerrero, F. F. López-Ruiz, V. Aldaya, and F. Cossio, “Harmonic states for the free particle,” arXiv:1010.5525v3 [quant-ph] 1 Jul 2011.

  56. I. A. Malkin, V. I. Man’ko, and D. A. Trifonov, J. Math. Phys., 14, 576 (1973).

    Article  ADS  Google Scholar 

  57. B. Sanborn, S. K. Suslov, and L. Vinet, “Dynamic invariants and Berry’s phase for generalized driven harmonic oscillators,” arXive:1108.5144v1 [math- ph] 25 Aug 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei K. Suslov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanfear, N., López, R.M. & Suslov, S.K. Exact wave functions for generalized harmonic oscillators. J Russ Laser Res 32, 352–361 (2011). https://doi.org/10.1007/s10946-011-9223-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-011-9223-1

Keywords

Navigation