Skip to main content
Log in

Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We analyze nonlinear Schrödinger and wave equations whose linear part is given by the renormalized Anderson Hamiltonian in two and three dimensional periodic domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on elliptic boundary value problems. Prepared for publication by B. Frank Jones, Jr. with the Assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London (1965)

  2. Allez, R., Chouk, K.: The continuous Anderson Hamiltonian in dimension two (2015). arXiv:1511.02718 [math]

  3. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16(4), 322–333 (1971)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom. Funct. Anal. GAFA 3(2), 209–262 (1993)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. Theory Methods Appl. 4(4), 677–681 (1980)

    Article  Google Scholar 

  6. Burq, N., Gérard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Am. J. Math. 126(3), 569–605 (2004)

    Article  Google Scholar 

  7. Cannizzaro, G., Chouk, K.: Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential (2015). ArXiv preprint arXiv:1501.04751

  8. Cazenave, T.: Semilinear Schrödinger Equations. American Mathematical Soc, Providence (2003)

    Book  Google Scholar 

  9. Debussche, A., Weber, H.: The Schrödinger equation with spatial white noise potential (2016). ArXiv preprint arXiv:1612.02230

  10. Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. Nova Science Publishers, Inc., Hauppauge (2003)

    MATH  Google Scholar 

  11. Evans, L.C.: Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  12. Gubinelli, M., Koch, H., Oh, T.: Renormalization of the two-dimensional stochastic nonlinear wave equation (2017). arXiv:1703.05461 [math]

  13. Gubinelli, M., Perkowski, N.: An introduction to singular SPDEs. ArXiv e-prints (2017)

  14. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. In: Forum of Mathematics, Pi, vol. 3. Cambridge University Press (2015)

  15. Gubinelli, M., Perkowski, N.: KPZ reloaded. Commun. Math. Phys. 349(1), 165–269 (2017)

    Article  MathSciNet  Google Scholar 

  16. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  MathSciNet  Google Scholar 

  17. Hairer, M., Labbé, C.: A simple construction of the continuum parabolic Anderson model on \({\bf R}^2\). Electron. Commun. Probab. 20(43), 11 (2015)

    MATH  Google Scholar 

  18. Labbé, C.: The continuous Anderson hamiltonian in \(d\le 3\) (2018). arXiv:1809.03718

  19. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  20. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press Harcourt Brace Jovanovich, Publishers, New York (1975)

    MATH  Google Scholar 

  21. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis, vol. 106. American Mathematical Soc, Providence (2006)

    Book  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge partial support from the German Research Foundation (DFG) via CRC 1060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ugurcan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Paracontrolled distributions and function spaces

Paracontrolled distributions and function spaces

We recall the definitions of Bony paraproducts, Besov and Sobolev spaces and collect some results about products of distributions. We work on the d-dimensional torus \(\mathbb {T}^d:= \mathbb {R}^d/\mathbb {Z}^d\) for \(d=2,3\). For any f in the space \(\mathscr {S}' ( \mathbb T^d,\mathbb R)\) of tempered distributions on \(\mathbb {T}^d\), the Fourier transform of f will be denoted by \(\hat{f} : \mathbb {Z}^d\rightarrow \mathbb {C}\) (or sometimes \(\mathscr {F}f\)) and is defined for \(k\in \mathbb {Z}^d\) by

$$\begin{aligned} \hat{f}(k) := \langle f,\exp (2\pi i \langle k, \cdot \rangle ) = \int _{\mathbb {T}^d} f(x) \exp (- 2\pi i\langle k,x\rangle ) dx. \end{aligned}$$

Recall that for any \(f\in L^2(\mathbb {T}^d,\mathbb {R})\) and a.e. \(x\in \mathbb {T}^d\), we have

$$\begin{aligned} f(x)=\sum _{k \in \mathbb {Z}^d} \hat{f}(k) \exp ( 2\pi i\langle k,x\rangle ). \end{aligned}$$
(66)

The Sobolev space \(\mathscr {H}^\alpha (\mathbb T^d)\) with index \(\alpha \in \mathbb {R}\) is defined as

$$\begin{aligned} \mathscr {H}^\alpha (\mathbb {T}^d) := \{f \in \mathscr {S}' ( \mathbb {T}^d;\mathbb R): \sum _{k\in \mathbb {Z}^d} (1+|k|^2)^\alpha \, |\hat{f}(k)|^2 < +\infty \}\,. \end{aligned}$$

Before introducing the Besov spaces, we recall the definition of Littlewood-Paley blocks. We denote by \(\chi \) and \(\rho \) two nonnegative smooth and compactly supported radial functions \(\mathbb {R}^d\rightarrow \mathbb {R}\) such that

  1. 1.

    The support of \(\chi \) is contained in a ball \(\{x\in \mathbb {R}^d: |x| \le R\}\) and the support of \(\rho \) is contained in an annulus \(\{x\in \mathbb {R}^d: a\le |x| \le b\}\);

  2. 2.

    For all \(\xi \in \mathbb {R}^d\), \(\chi (\xi )+\sum _{j\ge 0}\rho (2^{-j}\xi )=1\);

  3. 3.

    For \(j\ge 1\), \(\chi \rho (2^{-j}\cdot )\equiv 0\) and \(\rho (2^{-i}\cdot ) \rho (2^{-j}\cdot )\equiv 0\) for \(|i-j|\ge 1\).

The Littlewood-Paley blocks \((\Delta _j)_{j\ge -1}\) acting on \(f\in \mathscr {S}'(\mathbb {T}^d)\) are defined by

$$\begin{aligned} \mathscr {F}(\Delta _{-1} f) = \chi \hat{f}\ \text{ and } \text{ for } \ j \ge 0, \quad \mathscr {F}(\Delta _j f) = \rho (2^{-j}.) \hat{f}. \end{aligned}$$

Note that, for \(f\in \mathscr {S}'(\mathbb {T}^d)\), the Littlewood-Paley blocks \((\Delta _j f)_{j\ge -1}\) define smooth functions, as their Fourier transforms have compact supports. We also set, for \(f\in \mathscr {S}'\) and \(j\ge 0\),

$$\begin{aligned} S_j f := \sum _{i=-1}^{j-1} \Delta _i f \end{aligned}$$

and note that \(S_j f\) converges in the sense of distributions to f as \(j\rightarrow \infty \).

The Besov space with parameters \(p,q \in [1,\infty ),\alpha \in \mathbb {R}\) can now be defined as

$$\begin{aligned} B_{p,q}^{\alpha }(\mathbb {T}^d, \mathbb {R}):=\left\{ u\in \mathscr {S}'(\mathbb {T}^d); \quad \Vert u\Vert _{ B_{p,q}^{\alpha }}= \left( \sum _{j\ge -1}2^{jq\alpha }\Vert \Delta _ju\Vert ^q_{L^p} \right) ^{1/q} <+\infty \right\} .\nonumber \\ \end{aligned}$$
(67)

We also define the Besov-Hölder spaces

$$\begin{aligned} \mathscr {C}^{\alpha }:= B_{\infty ,\infty }^{\alpha } \end{aligned}$$

which are naturally equipped with the norm \(\Vert f\Vert _{\mathscr {C}^\alpha }:=\Vert f\Vert _{B_{\infty ,\infty }^{\alpha }}=\sup _{j\ge -1} 2^{j \alpha } \Vert \Delta _j f\Vert _{L^\infty }\). For \(\alpha \in (0,1)\) these spaces coincide with the classical Hölder spaces.

We can formally decompose the product fg of two distributions f and g as

$$\begin{aligned} fg=f\prec g+f\circ g+f\succ g \end{aligned}$$

where

$$\begin{aligned} f\prec g :=\sum _{j\ge -1} \sum _{i=-1} ^{j-2} \Delta _i f \Delta _j g&\text {and}&f\succ g:= \sum _{j \ge -1} \sum _{i=-1}^{j-2} \Delta _i g \Delta _j f \end{aligned}$$

are usually referred to as the paraproducts whereas

$$\begin{aligned} f\circ g:=\sum _{j\ge -1}\sum _{|i-j|\le 1}\Delta _i f \Delta _j g \end{aligned}$$
(68)

is called the resonant product.

Moreover, we define the notations \(f\preccurlyeq g:=f\prec g+f\circ g\) and \(f\succcurlyeq g:=f\succ g+f\circ g\).

The paraproduct terms are always well defined irrespective of regularities. The resonant product is a priori only well defined if the sum of regularities is strictly greater than zero. This is reminiscent of the well known fact that one can not multiply distributions in general. The following result makes those comments precise and gives simple but extremely vital estimates for paraproducts.

Proposition A.1

(Bony estimates,[2]) Let \(\alpha , \beta \in \mathbb {R}\). We have the following bounds:

  1. 1.

    If \(f \in L^2\) and \(g \in \mathscr {C}^{\beta }\), then

    $$\begin{aligned} \Vert f \prec g \Vert _{\mathscr {H}^{\beta - \delta }} \le C_{\delta , \beta } \Vert f \Vert _{L^2} \Vert g \Vert _{\mathscr {C}^{\beta }} \end{aligned}$$

    for all \(\delta > 0\).

  2. 2.

    if \(f \in \mathscr {H}^{\alpha }\) and \(g \in L^{\infty }\) then

    $$\begin{aligned} \Vert f \succ g \Vert _{\mathscr {H}^{\alpha }} \le C_{\alpha , \beta } \Vert f \Vert _{\mathscr {H}^{\alpha }} \Vert g \Vert _{\mathscr {C}^{\beta }}. \end{aligned}$$
  3. 3.

    If \(\alpha < 0\), \(f \in \mathscr {H}^{\alpha }\) and \(g \in \mathscr {C}^{\beta }\), then

    $$\begin{aligned} \Vert f \prec g \Vert _{\mathscr {H}^{\alpha + \beta }} \le C_{\alpha , \beta } \Vert f \Vert _{\mathscr {H}^{\alpha }} \Vert g \Vert _{\mathscr {C}^{\beta }}. \end{aligned}$$
  4. 4.

    If \(g \in \mathscr {C}^{\beta }\) and \(f \in \mathscr {H}^{\alpha }\) for \(\beta < 0\) then

    $$\begin{aligned} \Vert f \succ g\Vert _{\mathscr {H}^{\alpha + \beta }} \le C_{\alpha , \beta } \Vert f \Vert _{\mathscr {H}^{\alpha }} \Vert g \Vert _{\mathscr {C}^{\beta }} \end{aligned}$$
  5. 5.

    If \(\alpha + \beta > 0\) and \(f \in \mathscr {H}^{\alpha }\) and \(g \in \mathscr {C}^{\beta }\), then

    $$\begin{aligned} | | f \circ g \Vert _{\mathscr {H}^{\alpha + \beta }} \le C_{\alpha , \beta } \Vert f \Vert _{\mathscr {H}^{\alpha }} \Vert g \Vert _{\mathscr {C}^{\beta }}. \end{aligned}$$

where \(C_{\alpha , \beta }\) is a finite positive constant.

Proposition A.2

Given \(\alpha \in (0, 1)\), \(\beta , \gamma \in \mathbb {R}\) such that \(\beta + \gamma < 0\) and \(\alpha + \beta + \gamma > 0\), there exists a trilinear operator C with the following bound

$$\begin{aligned} \Vert C (f, g, h) \Vert _{\mathscr {H}^{\alpha + \beta + \gamma }} \lesssim \Vert f \Vert _{\mathscr {H}^{\alpha }} \Vert g \Vert _{\mathscr {C}^{\beta }} \Vert h \Vert _{\mathscr {C}^{\gamma }} \end{aligned}$$

for all \(f \in \mathscr {H}^{\alpha }\), \(g \in \mathscr {C}^{\beta }\) and \(h \in \mathscr {C}^{\gamma }\).

The restriction of C to the smooth functions satisfies

$$\begin{aligned} C (f, g, h) = (f \prec g) \circ h - f (g \circ h). \end{aligned}$$

Proof

This is a restatement of the result (commutator Lemma) in [2], and the proof follows the same lines, with slight modifications. \(\square \)

We also prove the following modified version of the above Proposition, which suits our framework.

Proposition A.3

Let \(\alpha \in (0, 1)\), \(\beta , \gamma \in \mathbb {R}\) such that \(\beta + \gamma < 0\) and \(\alpha + \beta + \gamma > 0\). Then, there exists a trilinear operator \(C_N\) with the following bound

$$\begin{aligned} \Vert C_N (f, g, h) \Vert _{\mathscr {H}^{\alpha + \beta + \gamma }} \lesssim \Vert f \Vert _{\mathscr {H}^{\alpha }} \Vert g \Vert _{\mathscr {C}^{\beta }} \Vert h \Vert _{\mathscr {C}^{\gamma }} \end{aligned}$$

for all \(f \in \mathscr {H}^{\alpha }\), \(g \in \mathscr {C}^{\beta }\) and \(h \in \mathscr {C}^{\gamma }\).

The restriction of \(C_N\) to the smooth functions satisfies

$$\begin{aligned} C_N (f, g, h)&:= \left( \Delta _{> N} (f\prec g)\right) )\circ h- f(g \circ h) \end{aligned}$$

Proof

Observe that we have

$$\begin{aligned} C (f, g, h) - C_N (f, g, h)&= \left( \Delta _{\le N} (f\prec g)\right) )\circ h. \end{aligned}$$

So, we only need to show

$$\begin{aligned} \Vert \left( \Delta _{\le N} (f\prec g)\right) )\circ h \Vert _{\mathscr {H}^{\alpha + \beta + \gamma }} \lesssim \Vert f \Vert _{\mathscr {H}^{\alpha }} \Vert g \Vert _{\mathscr {C}^{\beta }} \Vert h \Vert _{\mathscr {C}^{\gamma }}. \end{aligned}$$

By product estimates, we obtain right away

$$\begin{aligned} \Vert \left( \Delta _{\le N} (f\prec g)\right) )\circ h \Vert _{\mathscr {H}^{\alpha + \beta + \gamma }} \lesssim \Vert \left( \Delta _{\le N} (f\prec g)\right) ) \Vert _{\mathscr {H}^{\alpha + \beta }} \Vert h \Vert _{\mathscr {C}^{\gamma }}. \end{aligned}$$

We need to show

$$\begin{aligned} \Vert \left( \Delta _{\le N} (f\prec g)\right) ) \Vert _{\mathscr {H}^{\alpha + \beta }} \lesssim \Vert f \Vert _{\mathscr {H}^{\alpha }} \Vert g \Vert _{\mathscr {C}^{\beta }}. \end{aligned}$$

We can write

$$\begin{aligned} \Vert \left( \Delta _{\le N} (f\prec g)\right) ) \Vert _{\mathscr {H}^{\alpha + \beta }}^2 = \sum _{k=-1}^{\infty } 2^{2k(\alpha +\beta )} \Vert \Delta _k \left( \Delta _{\le N} (f\prec g)\right) )\Vert _{L^2}^2. \end{aligned}$$

By the support of Fourier transforms we have that \( \Delta _k \left( \Delta _{\le N} (f\prec g)\right) ) = 0\) for \(k> N+1\) so we obtain

$$\begin{aligned} \Vert \left( \Delta _{\le N} (f\prec g)\right) ) \Vert _{\mathscr {H}^{\alpha + \beta }}^2 = \sum _{k=-1}^{N+1} 2^{2k(\alpha +\beta )} \Vert \Delta _k \left( \Delta _{\le N} (f\prec g)\right) )\Vert _{L^2}^2. \end{aligned}$$

By using the convention \(\Delta _{<k} f:= \sum _{i=-1}^{k-2} \Delta _k f\) we rewrite

$$\begin{aligned} \Vert \left( \Delta _{\le N} (f\prec g)\right) ) \Vert _{\mathscr {H}^{\alpha + \beta }}^2 = \sum _{k=-1}^{N+1} 2^{2k(\alpha +\beta )} \Vert \Delta _k \left( \Delta _{\le N} (\sum _{i=-1}^\infty \Delta _{<i} f \Delta _i g)\right) )\Vert _{L^2}^2. \end{aligned}$$

Again by support arguments this boils down to

$$\begin{aligned} \Vert \left( \Delta _{\le N} (f\prec g)\right) ) \Vert _{\mathscr {H}^{\alpha + \beta }}^2 = \sum _{k=-1}^{N+1} 2^{2k(\alpha +\beta )} \Vert \Delta _k \left( \Delta _{\le N} \left( \sum _{i=-1}^{N+1} \Delta _{<i} f \Delta _i g)\right) \right) \Vert _{L^2}^2. \end{aligned}$$

Applying two successive Young’s we obtain

$$\begin{aligned} \Vert \left( \Delta _{\le N} (f\prec g)\right) ) \Vert _{\mathscr {H}^{\alpha + \beta }}^2 \le \sum _{k=-1}^{N+1} 2^{2k(\alpha +\beta )} \Vert \phi _k\Vert _{L^1} \Vert \phi _{\le N}\Vert _{L^1} \sum _{i=-1}^{N+1} \Vert \Delta _{<i} f \Delta _i g\Vert _{L^2}^2 \end{aligned}$$

where on the right hand side we can write

$$\begin{aligned}&\Vert \left( \Delta _{\le N} (f\prec g)\right) ) \Vert _{\mathscr {H}^{\alpha + \beta }}^2 \le \sum _{k=-1}^{N+1} 2^{2k(\alpha +\beta )} \Vert \phi _k\Vert _{L^1}^2 \Vert \phi _{\le N}\Vert _{L^1}^2 \sum _{i=-1}^{N+1} \Vert \Delta _{<i} f \Delta _i g\Vert _{L^2}^2\\&\quad \le \sum _{k=-1}^{N+1} 2^{(2k-2i)\beta } 2^{(2k-2i)\alpha }\Vert \phi _k\Vert _{L^1}^2 \Vert \phi _{\le N}\Vert _{L^1}^2 \left( \sup _{1\le i \le N+1}2^{2 i \beta }\Vert \Delta _i g\Vert _{L^\infty }^2 \right) \\&\quad \quad \sum _{i=-1}^{N+1} 2^{2i\alpha } \Vert \Delta _{<i} f\Vert _{L^2}^2. \end{aligned}$$

At this point, it is clear that for a constant depending on N we readily have

$$\begin{aligned} \Vert \left( \Delta _{\le N} (f\prec g)\right) ) \Vert _{\mathscr {H}^{\alpha + \beta }}^2 \lesssim \Vert f \Vert _{\mathscr {H}^{\alpha }}^2 \Vert g \Vert _{\mathscr {C}^{\beta }}^2 \end{aligned}$$

and the result follows.

Lemma A.4

(Bernstein’s inequality, [14]) Let \(\mathscr {A}\) be an annulus and \(\mathscr {B}\) be a ball. For any \(k \in \mathbbm {N}, \lambda > 0,\)and \(1 \le p \le q \le \infty \) we have

  1. 1.

    if \(u \in L^p (\mathbbm {R}^d) \) is such that \({\text {supp}} (\mathscr {F}u) \subset \lambda \mathscr {B}\) then

    $$\begin{aligned} \underset{\mu \in \mathbbm {N}^d : | \mu | = k}{\max } \Vert \partial ^{\mu } u \Vert _{L^q} \lesssim _k \lambda ^{k + d \left( \frac{1}{p} - \frac{1}{q} \right) } \Vert u \Vert _{L^p} \end{aligned}$$
  2. 2.

    if \(u \in L^p (\mathbbm {R}^d) \)is such that \({\text {supp}} (\mathscr {F}u) \subset \lambda \mathscr {A}\) then

    $$\begin{aligned} \lambda ^k \Vert u \Vert _{L^p} \lesssim _k \underset{\mu \in \mathbbm {N}^d : | \mu | = k}{\max } \Vert \partial ^{\mu } u \Vert _{L^p}. \end{aligned}$$

Proposition A.5

(Paralinearisation, [15]) Let \(\alpha \in (0, 1) \) and \(F \in C^2 .\) Then there exists a locally bounded map \(R_F : \mathscr {C}^{\alpha } \rightarrow \mathscr {C}^{2 \alpha }\) such that

$$\begin{aligned} F (f) = F' (f) \prec f + R_F (f) \ {\text {for}} {\text {all}} \ f \in \mathscr {C}^{\alpha }. \end{aligned}$$

Lemma A.6

Let \(\alpha , \beta , \gamma \in \mathbbm {R}\) with \(\alpha + \beta <0\), \(\alpha + \beta + \gamma \ge 0\), and \(f \in \mathscr {H}^{\alpha }, g \in \mathscr {C}^{\beta }, h \in \mathscr {H}^{\gamma },\) then there exists a map D(fgh) with the following bound

$$\begin{aligned} | D (f, g, h) | \lesssim \Vert g \Vert _{\mathscr {C}^{\beta }} \Vert f \Vert _{\mathscr {H}^{\alpha }} \Vert h \Vert _{\mathscr {H}^{\gamma }}. \end{aligned}$$
(69)

Moreover the restriction of D(fgh) to the smooth functions fgh is as follows:

$$\begin{aligned} D (f, g, h) = \langle f, h \circ g \rangle - \langle f \prec g, h \rangle . \end{aligned}$$

Proof

We define

$$\begin{aligned} D (f, g, h) := \left( \sum _{i \ge k - 1, | j - k | \le L} - \sum _{i \sim k, 1 < | j - k | \le L} \right) \langle \Delta _i f, \Delta _j h \Delta _k g \rangle . \end{aligned}$$

So we get, for some \(\delta >0\),

$$\begin{aligned} | D (f, g, h) |&\lesssim \sum _{i \gtrsim k, j \sim k} | \langle \Delta _i f, \Delta _j h \Delta _k g \rangle |\\&\le \sum _{i \gtrsim k, j \sim k} \Vert \Delta _i f \Vert _{L^2} \Vert \Delta _j h \Vert _{L^2} \Vert \Delta _k g \Vert _{L^{\infty }}\\&\le \Vert g \Vert _{\mathscr {C}^{- 1 - \delta }} \sum _{i \gtrsim k, j \sim k} 2^{k (1 + \delta )} \Vert \Delta _i f \Vert _{L^2} \Vert \Delta _j h \Vert _{L^2} \\&\le \Vert g \Vert _{\mathscr {C}^{- 1 - \delta }} \Vert f \Vert _{\mathscr {H}^{(1 + \delta ) / 2}} \Vert h \Vert _{\mathscr {H}^{(1 + \delta ) / 2}} \end{aligned}$$

and this argument can be adapted to show (69) by simply observing \(1 \le 2^{k(\beta + \alpha + \gamma )} = 2^{k\beta }2^{k ( \alpha + \gamma )} \), since \(\beta + \alpha + \gamma \ge 0\) . Moreover, for smooth functions fgh; we can compute

$$\begin{aligned} \langle f, h \circ g \rangle - \langle f \prec g, h \rangle&= \sum _{i, | j - k | \le 1} \langle \Delta _i f, \Delta _j h \Delta _k g \rangle - \sum _{i< k - 1, j} \langle \Delta _i f \Delta _k g, \Delta _j h \rangle \\&= \left( \sum _{i, | j - k | \le 1} - \sum _{i< k - 1, | j - k | \le L} \right) \langle \Delta _i f \Delta _k g, \Delta _j h \rangle \\&= \left( \sum _{i, | j - k | \le L} {-} \sum _{i< k - 1, | j - k | \le L} {-} \sum _{i, 1< | j - k | \le L} \right) \langle \Delta _i f, \Delta _j h \Delta _k g \rangle \\&= \left( \sum _{i \ge k - 1, | j - k | \le L} - \sum _{i, 1< | j - k | \le L} \right) \langle \Delta _i f, \Delta _j h \Delta _k g \rangle \\&= \left( \sum _{i \ge k - 1, | j - k | \le L} - \sum _{i \sim k, 1 < | j - k | \le L} \right) \\&\qquad \langle \Delta _i f, \Delta _j h \Delta _k g \rangle = D (f, g, h). \end{aligned}$$

Hence the result. \(\square \)

Remark A.7

Proposition A.6 says that the paraproduct is almost the adjoint of the resonant product, meaning up to a more regular remainder term as is often the case in paradifferential calculus.

Lemma A.8

Let \(f \in \mathscr {H}^{\alpha }, g \in \mathscr {C}^{\beta },\) with \(\alpha \in (0, 1), \beta \in \mathbbm {R},\) there exists a bilinear map R(fg) that satisfies the following bound

$$\begin{aligned} \Vert R (f, g) \Vert _{\mathscr {H}^{\alpha + \beta + 2}} \lesssim \Vert f \Vert _{\mathscr {H}^{\alpha }} \Vert g \Vert _{\mathscr {C}^{\beta }}, \end{aligned}$$

and restricts to smooth functions as

$$\begin{aligned} R (f, g) = (1 - \Delta )^{- 1} (f \prec g) - f \prec (1 - \Delta )^{- 1} g. \end{aligned}$$

Proof

The proof is basically a straightforward modification of the proof of [2, Proposition A.2], which has almost the same statement. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubinelli, M., Ugurcan, B. & Zachhuber, I. Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions. Stoch PDE: Anal Comp 8, 82–149 (2020). https://doi.org/10.1007/s40072-019-00143-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-019-00143-9

Keywords

Navigation