Skip to main content
Log in

Conductance Spectra of Carbyne Transverse to Carbon Chains. Is It Related to the Soliton Lattice?

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The influence of the thickness of an oriented carbyne film on the conductance of a special sample was investigated with an electric field of up to 1.8 ⋅ 106 V/cm applied transverse to the carbon chains. A steplike dependence of the conductance on the thickness was observed. The general shape of the current-voltage characteristics, IU 2.3, changes to IU 2 when the thickness corresponding to a rapid change of conductance is attained. The characteristics presumably correspond to the space-charge limited current in the presence or absence of the trap band within the carbyne band gap. We propose the formation of a charge-topological soliton lattice at “magic” thicknesses which results in a layered structure of the film and in a bandlike conduction transverse to the chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Heimann, S. E. Evsyukov, and L. Kavan, Carbyne and Carbynoid Structures, Kluwer, Dordrecht (1999).

    Google Scholar 

  2. R. B. Heimann, J. Kleiman, and N. M. Salansky, Nature, 306, 164 (1983).

    CAS  Google Scholar 

  3. A. G. Whittaker, Science, 200, 763 (1978).

    CAS  Google Scholar 

  4. Y. P. Kudryavtsev, S. E. Evsykov, V. G. Babaev, et al., Carbon, 30, 213 (1992).

    CAS  Google Scholar 

  5. Patent US 6,355 350 B1, Tetracarbon (2002).

  6. Patent US 6,454 797 B2, Tetracarbon (2002).

  7. V. G. Babaev, M. B. Guseva, and N. F. Savchenko, Poverkhn. Rentgen. Sinkhrotr. Neytron. Issled., 3, 16 (2004).

    Google Scholar 

  8. D. P. Ertchak, et al, J. Phys.: Condens. Matter, 11, 855 (1999).

    CAS  Google Scholar 

  9. S. Kivelson, Phys. Rev. B, 25, 3798 (1982).

    CAS  Google Scholar 

  10. R. Hosemann, Ber. Bunsenges., 74, 755 (1970).

    CAS  Google Scholar 

  11. C. S. Casari, A. Li Bassi, L. Ravagnan, et al., Phys. Rev. B, 69, 075422 (2004).

    Google Scholar 

  12. K. C. Kao and W. Hwang, Electrical Transport in Solids, Pergamon Press, Oxford-New York-Toronto-Sydney-Paris-Frankfurt (1981).

    Google Scholar 

  13. A. Johansson and S. Stafstrom, Phys. Rev. B, 65, 045207 (2002).

    Google Scholar 

  14. D. W. Ewing and G. V. Pfeiffer, Chem. Phys. Lett., 86, 365 (1982).

    CAS  Google Scholar 

  15. E. A. Goresy and G. Donnay, Science, 161, 363 (1968).

    Google Scholar 

  16. G. P. Vdovykin, Meteoritics, 7, 547 (1972).

    CAS  Google Scholar 

  17. S. W. McElvany, M. M. Ross, and J. H. Callahan, Acc. Chem. Res., 25, 162 (1992).

    CAS  Google Scholar 

  18. R. E. Smalley, Acc. Chem. Res., 25, 98 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prazdnikov, Y.E., Lepnev, L.S., Bozhko, A.D. et al. Conductance Spectra of Carbyne Transverse to Carbon Chains. Is It Related to the Soliton Lattice?. J Russ Laser Res 26, 245–251 (2005). https://doi.org/10.1007/s10946-005-0017-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-005-0017-1

Keywords

Navigation