Skip to main content
Log in

Analysis of the Structure and Conductivity of Kinked Carbon Chains Obtained by Pulsed Plasma Deposition on Various Metal Substrates

  • Carbon Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Linear-chain carbon films with a thickness of order 100 nm were studied by tunneling spectroscopy. The oscillating dependence of the differential conductivity of the investigated structures is established. The results obtained are interpreted using a model of charge-density wave formation in regular structural kinks of carbon chains. The Raman spectra of the films are recorded. The simulated spectra of harmonic oscillations of polyines (–C≡C–) n and cumulenes (=C=) n of carbon films are theoretically compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Babaev, M. B. Guseva, N. D. Novikov, V. V. Khvostov, and P. Flood, Polyynes Synthesis, Properties and Application, Ed. by F. Cataldo (CRC, Boca Raton, FL, 2006).

  2. US Patent No. 6.355.350.B1 (2002).

  3. V. G. Babaev, M. B. Guseva, N. F. Savchenko, N. D. Novikov, V. V. Khvostov, and P. Flad, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 3, 16 (2004).

    Google Scholar 

  4. V. V. Khvostov, I. P. Ivanenko, O. A. Streletskiy, N. D. Novikov, V. G. Yakunin, and N. F. Savchenko, JETP Lett. 97, 231 (2013).

    Article  Google Scholar 

  5. E. A. Buntov, A. F. Zatsepin, M. B. Guseva, and Yu. S. Ponosov, Carbon 117, 271 (2017).

    Article  Google Scholar 

  6. N. S. Maslova, S. I. Oreshkin, V. I. Panov, and S. V. Savinov, JETP Lett. 67, 146 (1998).

    Article  ADS  Google Scholar 

  7. T. K. Zvonareva, V. I. Ivanov-Omskii, V. V. Rozanov, and L. V. Sharonova, Semiconductors 35, 1398 (2001).

    Article  ADS  Google Scholar 

  8. A. O. Golubok, O. M. Gorbenko, T. K. Zvonareva, S. A. Maslov, V. V. Rozanov, S. G. Yastrebov, and V. I. Ivanov-Omskii, Semiconductors 34, 217 (2000).

    Article  ADS  Google Scholar 

  9. N. S. Maslova, Yu. N. Moiseev, S. V. Savinov, and R. G. Yusupov, JETP Lett. 58, 528 (1993).

    ADS  Google Scholar 

  10. K. S. Nakayama, M. G. Alemany, T. Sugano, K. Ohmori, H. Kwak, J. R. Chelikowsky, and J. H. Weaver, Phys. Rev. B 73, 035330 (2006).

    Article  ADS  Google Scholar 

  11. Z. Klusek, P. Kowalczyk, and P. Byszewski, Vacuum 63, 145 (2001).

    Article  ADS  Google Scholar 

  12. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).

    Article  ADS  Google Scholar 

  13. J. G. Simmons, J. Appl. Phys. 34, 238 (1963).

    Article  ADS  Google Scholar 

  14. Advanced Technology Center RU. http://www.nanoscopy. net/en/.

  15. W. A. Chalifoux and R. R. Tykwinski, Nat. Chem. 2, 967 (2010).

    Article  Google Scholar 

  16. A. Milani, M. Tommasini, V. Russo, A. L. Bassi, A. Lucotti, F. Cataldo, and C. S. Casari, Beilstein J. Nanotechnol. 6, 480 (2015).

    Article  Google Scholar 

  17. J. G. Korobova and D. I. Bazhanov, JETP Lett. 93, 730 (2011).

    Article  Google Scholar 

  18. V. M. Melnichenko, A. M. Sladkov, and J. N. Nikulin, Russ. Chem. Rev. 51, 421 (1982).

    Article  ADS  Google Scholar 

  19. C. Casiraghi, F. Piazza, A. C. Ferrari, D. Grambole, and J. Robertson, Diamond Relat. Mater. 14, 1098 (2005).

    Article  ADS  Google Scholar 

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian'03, Revision B.03 (Gaussian Inc., Pittsburgh, 2003).

    Google Scholar 

  21. S. V. Krasnoshchekov and N. F. Stepanov, J. Phys. Chem. 82, 690 (2008).

    Google Scholar 

  22. S. V. Krasnoshchekov, E. V. Isayeva, and N. F. Stepanov, J. Phys. Chem. A 116, 3691 (2012).

    Article  Google Scholar 

  23. S. V. Krasnoshchekov, N. C. Craig, P. Boopalachandran, J. Laane, and N. F. Stepanov, J. Phys. Chem. 119, 10706 (2015).

    Article  Google Scholar 

  24. Y. N. Panchenko, S. V. Krasnoshchiokov, and C. W. Bock, J. Comput. Chem. 9, 443 (1988).

    Article  Google Scholar 

  25. A. D. Boese, W. Klopper, and J. M. L. Martin, Int. J. Quant. Chem. 104, 830 (2005).

    Article  ADS  Google Scholar 

  26. A. C. Ferrari and J. Robertson, Phys. Rev. B 64, 075414 (2001).

    Article  ADS  Google Scholar 

  27. A. Milani, M. Tommasini, V. Russo, A. li Bassi, A. Lucotti, F. Cataldo, and S. Carlo, Beiltein J. Nanotechnol. 6, 480 (2015).

    Article  Google Scholar 

  28. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  ADS  Google Scholar 

  29. A. N. Obraszov, A. P. Volkov and I. Yu. Pavlovsky, JETP Lett. 68, 56 (1998).

    ADS  Google Scholar 

  30. C. S. Casari, A. li Bassi, A. Baserga, L. Ravagnan, P. Piseri, C. Lenardi, M. Tommasini, A. Milani, D. Fazzi, C. E. Bottani, and P. Milani, Phys. Rev. B 77, 195444 (2008).

    Article  ADS  Google Scholar 

  31. M. Rybachuka and J. M. Bellb, Carbon 47, 2481 (2009).

    Article  Google Scholar 

  32. E. Cinquanta, L. Ravagnan, I. Eligio Castelli, F. Cataldo, N. Manini, G. Onida, and P. Milani, J. Chem. Phys. 135, 194501 (2011).

    Article  ADS  Google Scholar 

  33. P. K. Chu and L. Li, Mater. Chem. Phys. 96, 253 (2006).

    Article  Google Scholar 

  34. J. A. Lenz, C. A. Perottoni, N. M. Balzaretti, and J. A. H. da Jornada, J. Appl. Phys. 89, 8284 (2001).

    Article  ADS  Google Scholar 

  35. A. C. Ferrari and J. Robertson, Phys. Rev. B 64, 075414 (2001).

    Article  ADS  Google Scholar 

  36. Sh. Li, G. Ji, Zh. Huang, F. Zhang, and Y. Du, Carbon 45, 2946 (2007).

    Article  Google Scholar 

  37. H. Kuzmany and P. Knoll, Springer Ser. Solid State Sci. 63, 114 (1985).

    Google Scholar 

  38. M. Chhowalla, A. C. Ferrari, J. Roberston, and G. A. J. Amaratunga, Appl. Phys. Lett. 76, 1419 (2000).

    Article  ADS  Google Scholar 

  39. F. Cataldo and D. Capitani, Mater. Chem. Phys. 59, 225 (1999).

    Article  Google Scholar 

  40. J. A. Lenz, C. A. Perottoni, N. M. Balzaretti, and J. A. H. da Jornada, J. Appl. Phys. 89, 8284 (2001).

    Article  ADS  Google Scholar 

  41. L. Kavan, J. Hlavaty, J. Kastner, and H. Kuzmany, Carbon 33, 1321 (1995).

    Article  Google Scholar 

  42. A. V. Baranov, A. N. Bekhterev, Y. S. Bobovich, and V. I. Petrov, Opt. Spectrosc. (USSR) 62, 612 (1987).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Ivanenko.

Additional information

Original Russian Text © I.P. Ivanenko, S.V. Krasnoshchekov, A.V. Pavlikov, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 7, pp. 768–774.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanenko, I.P., Krasnoshchekov, S.V. & Pavlikov, A.V. Analysis of the Structure and Conductivity of Kinked Carbon Chains Obtained by Pulsed Plasma Deposition on Various Metal Substrates. Semiconductors 52, 907–913 (2018). https://doi.org/10.1134/S1063782618070102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618070102

Navigation