Skip to main content
Log in

Parity Effects Induced by the Resonant Electronic States Coupling in Polyacetylene-Based Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic transport properties of the carbon atomic chain in combination with a stand-up attached polyacetylene (C\(_n\)H\(_n\) + 1) molecule sandwiched between two zigzag graphene nanoribbon electrodes, were investigated based on the density-function theory and the nonequilibrium Green's functions approach. Our calculation shows that the transport behavior is sensitive to the number of carbon atoms on the C\(_n\)H\(_n\) + 1 chains. Specifically, we demonstrate that the transport properties of even-n C\(_n\)H\(_n\) + 1 devices behave much stronger than the odd ones; in addition, the odd-n C\(_n\)H\(_n\) + 1 devices provide well-matched resonance transport channels between the transverse carbon chain and stand-up attached C\(_n\)H\(_n\) + 1 chains, which induces the isolated transmission peak at the Fermi level. So an abnormal even–odd oscillation in conductance in terms of the number of carbon atoms on C\(_n\)H\(_n\) + 1 chains can be found. On the other hand, the striking negative differential resistance behaviors appear in the proposed devices. The mechanisms are analyzed and revealed by the local density of states around the Fermi level at zero bias, with the evolution of the molecular projected self-consistent Hamiltonian associated with the transmission spectrum under different applied bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V.B. Engelkes, and C.D. Frisbie, Adv. Mater. 15, 1881 (2003).

    Article  Google Scholar 

  2. T. Yelin, R. Vardimon, N. Kuritz, R. Korytr, A. Bagrets, F. Evers, L. Kronik, and O. Tal, Nano Lett. 13, 1956 (2015).

    Article  Google Scholar 

  3. J.J. Zhang, Z.H. Zhang, J. Li, D. Wang, Z. Zhu, G.P. Tang, X.Q. Deng, and Z.Q. Fan, Org. Electron. 15, 65 (2014).

    Article  Google Scholar 

  4. T. Chen, X. Li, L. Wang, K. Luo, Q. Li, X. Zhang, and X. Shang, EPL 105, 68 (2014).

    Google Scholar 

  5. M.G. Zeng, L. Shen, Y.Q. Cai, and Z.D. Sha, Appl. Phys. Lett. 96, 042104 (2010).

    Article  Google Scholar 

  6. A. La Torre, A. Botello-Mendez, W. Baaziz, J.-C. Charlier, and F. Banhart, Nat. Commun. 6, 6636 (2015).

    Article  Google Scholar 

  7. O. Cretu, A.R. Botellomendez, I. Janowska, C. Phamhuu, J.C. Charlier, and F. Banhart, Nano Lett. 8, 13 (2013).

    Article  Google Scholar 

  8. C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 (2009).

    Article  Google Scholar 

  9. W.J. Cho, Y. Cho, S.K. Min, W.Y. Kim, and K.S. Kim, J. Am. Chem. Soc. 133, 9364 (2011).

    Article  Google Scholar 

  10. T. Chen, L. Wang, X. Li, K. Luo, L. Xu, X. Zhang, and M. Long, RSC Adv. 4, 60376 (2014).

    Article  Google Scholar 

  11. X. Li, L. Cao, H. L. Li, H. Wan, and G. Zhou, J. Phys. Chem. C 120, 5 (2016).

    Google Scholar 

  12. A. Saraivasouza, M. Smeu, H. Terrones, A. Filho, and M. Ratner, J. Phys. Chem. C 117, 21178 (2013).

    Article  Google Scholar 

  13. L.L. Cui, B.C. Yang, X.M. Li, and C. Cao, J. Appl. Phys. 116, 260 (2014).

    Google Scholar 

  14. J.B. Pan, Z.H. Zhang, K.H. Ding, X.Q. Deng, and C. Guo, Appl. Phys. Lett. 25, 73 (2011).

    Google Scholar 

  15. H. Ren, Q.X. Li, Y. Luo, and J. Yang, Appl. Phys. Lett. 94, 173110 (2009).

    Article  Google Scholar 

  16. X.F. Li, L.L. Wang, K.Q. Chen, and Y. Luo, Appl. Phys. Lett. 101, 073101 (2012).

    Article  Google Scholar 

  17. P. Zhao, Q.H. Wu, D.S. Liu, and G. Chen, J. Chem. Phys. 140, 355 (2014).

    Google Scholar 

  18. Y.H. Zhou, J. Zeng, L.M. Tang, K.Q. Chen, and W.P. Hu, Org. Electron. 14, 2940 (2013).

    Article  Google Scholar 

  19. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).

    Article  Google Scholar 

  20. M.R. Jafari, B. Bahrami, and T. Abolghasemi, J. Electron. Mater. 1, 573 (2016).

    Google Scholar 

  21. Y.W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  22. M.Q. Long, L. Tang, D. Wang, L.J. Wang, and Z.G. Shuai, J. Am. Chem. Soc. 131, 17728 (2009).

    Article  Google Scholar 

  23. J.C. Meyer, C.O. Girit, M.F. Crommie, and A. Zettl, Nature 454, 319 (2008).

    Article  Google Scholar 

  24. N.D. Lang and P. Avouris, Phys. Rev. Lett. 84, 358 (2000).

    Article  Google Scholar 

  25. Y.H. Zhou, C.Y. Chen, B.L. Li, and K.Q. Chen, Carbon 95, 503 (2015).

    Article  Google Scholar 

  26. X.Z. Wu, J. Xiao, L.N. Chen, C. Cao, H. Xu, and M.Q. Long, Phys. B 411, 131 (2013).

    Article  Google Scholar 

  27. C.S. Yannoni and T.C. Clarke, Phys. Rev. Lett. 51, 1191 (1983).

    Article  Google Scholar 

  28. L. Xu, L. Wang, W. Huang, X. Li, and W. Xiao, Phys. E 63, 259 (2014).

    Article  Google Scholar 

  29. Q. Li, L. Xu, L.L. Wang, K.W. Luo, W.Q. Huang, X.F. Li, and Y.B. Yu, EPL 111, 1 (2015).

    Google Scholar 

  30. C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng, Z. Liu, G. Zhang, D.H. Qu, H. Tian, M.A. Ratner, H.Q. Xu, A. Nitzan, and X. Guo, Science 352, 1443, (2016).

    Article  Google Scholar 

  31. P. Ordejon, E. Artacho, and J.M. Soler, Phys. Rev. B 153, 10441 (1996).

    Article  Google Scholar 

  32. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

    Article  Google Scholar 

  33. M. Brandbyge, Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  34. L. Wang, Z. Zhang, J. Zhao, and B. Ding, J. Electron. Mater. 45, 1165 (2016).

    Article  Google Scholar 

  35. R.H. Mathews, J.P. Sage, T. Sollner, S.D. Calawa, C.L. Chen, L.J. Mahoney, P.A. Maki, and K.M. Molvar, Proc. IEEE 87, 596 (1999).

    Article  Google Scholar 

  36. X.F. Li, K.Q. Chen, L.L. Wang, M.Q. Long, B.S. Zou, and Z. Shuai, Appl. Phys. Lett. 91, 133511 (2007).

    Article  Google Scholar 

  37. Y. Song, D.L. Bao, Z. Xie, G.P. Zhang, and C.K. Wang, Phys. Lett. A 377, 3228 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Li, H., Zhang, Y. et al. Parity Effects Induced by the Resonant Electronic States Coupling in Polyacetylene-Based Devices. J. Electron. Mater. 46, 5121–5126 (2017). https://doi.org/10.1007/s11664-017-5501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5501-1

Keywords

Navigation