Skip to main content

Advertisement

Log in

Mesoporous composite aerogel derived from cellulosic waste for efficient adsorption and eco-friendly degradation of cationic dye

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Water pollution caused by industrial effluents, containing organic dyes and metal ions, has significantly depleted freshwater sources. As a result, there is a pressing need to discover sustainable, cost-effective and eco-friendly approaches for wastewater treatment. In this context, a mesoporous composite aerogel was prepared using waste tissue paper and polyvinyl alcohol through a sol-gel and freeze-drying process. Characterization of the aerogel revealed impressive features, including high specific surface areas (301.9 m2/g), low density (0.0276 g/cm3) and high porosity (88.5%). To investigate the sorption capabilities, methylene blue (MB) was subjected to various operating conditions, such as initial concentration, temperature, and pH. The maximum sorption capacity of MB was found to be 898.52 mg/g, which aligned with the theoretical value obtained through a response surface methodology-based central composite design (CCD) and analysis of variance (ANOVA) using a quadratic model. The sorption kinetics of MB followed a pseudo-second-order model and the Langmuir adsorption isotherm provided an excellent fit to the experimental data, suggesting monolayer sorption. Thermodynamic analysis further confirmed that the sorption process was spontaneous and endothermic. Additionally, the composite aerogel demonstrated remarkable noise reduction properties, with a noise reduction coefficient of 0.71, highlighting its potential as an effective acoustic insulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All the data is available in the manuscript itself.

References

  1. S. Wang, Q. Zhang, Z. Wang, J. Pu, J. Water Process. Eng. 37, 101511 (2020)

    Google Scholar 

  2. Z. Yu, C. Hu, A.B. Dichiara, W. Jiang, J. Gu, Nanomaterials. 10, 1–20 (2020)

    CAS  Google Scholar 

  3. M. Khodaie, N. Ghasemi, B. Moradi, M. Rahimi, J Chem. (2013). https://doi.org/10.1155/2013/383985

    Article  Google Scholar 

  4. S. Dardouri, J. Sghaier, Korean J. Chem. Eng. 34, 1037–1043 (2017)

    CAS  Google Scholar 

  5. J. Singh, A.S. Dhaliwal, J. Polym. Environ. 29, 71–88 (2021)

    CAS  Google Scholar 

  6. S. Giraldo, I. Robles, L.A. God, N. Acelas, Molecules. 26, 4555 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Muz, M. Krauss, S. Kutsarova, T. Schulze, W. Brack, Environ. Sci. Technol. 51, 1830–1839 (2017)

    CAS  PubMed  Google Scholar 

  8. A. Mittal, A. Malviya, D. Kaur, J. Mittal, L. Kurup, J. Hazard. Mater. 148, 229–240 (2007)

    CAS  PubMed  Google Scholar 

  9. Y. Cui, X.Y. Liu, T.S. Chung, M. Weber, C. Staudt, C. Maletzko, Water Res. 91, 104–114 (2016)

    CAS  PubMed  Google Scholar 

  10. F. Abiri, N. Fallah, B. Bonakdarpour, Water Sci. Technol. 75, 1261–1269 (2017)

    CAS  PubMed  Google Scholar 

  11. H. Shi, J. Li, D. Shi, H. Shi, B. Feng, W. Li, Y. Bai, J. Zhao, A. He, Sep. Sci. Technol. 50, 2303–2310 (2015)

    CAS  Google Scholar 

  12. E. Prabakaran, K. Pillay, RSC Adv. 9, 7509–7535 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Neethu, T. Choudhury, Recent. Pat. Nanotechnol. 12, 200–207 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. G. Shen, L. Pan, R. Zhang, S. Sun, F. Hou, X. Zhang, J.J. Zou, Adv. Mater. 32, 1–9 (2020)

    Google Scholar 

  15. M. Oveisi, M.A. Asli, N.M. Mahmoodi, J. Hazard. Mater. 347, 123–140 (2018)

    CAS  PubMed  Google Scholar 

  16. C.H. Nguyen, R.S. Juang, J. Ind. Eng. Chem. 76, 296–309 (2019)

    CAS  Google Scholar 

  17. A.A. Peláez-Cid, A.M. Herrera-González, M. Salazar-Villanueva, A. Bautista-Hernández, J. Environ. Manage. 181, 269–278 (2016)

    PubMed  Google Scholar 

  18. Z. Li, N. Potter, J. Rasmussen, J. Weng, G. Lv, Chemosphere. 202, 127–135 (2018)

    CAS  PubMed  Google Scholar 

  19. P. Joshi, O.P. Sharma, S.K. Ganguly, M. Srivastava, O.P. Khatri, J. Colloid Interface Sci. 608, 2870–2883 (2022)

    CAS  PubMed  Google Scholar 

  20. A. Du, H. Wang, B. Zhou, C. Zhang, X. Wu, Y. Ge, T. Niu, X. Ji, T. Zhang, Z. Zhang, G. Wu, J. Shen, Chem. Mater. 30, 6849–6857 (2018)

    CAS  Google Scholar 

  21. L. Li, F. Lu, C. Wang, F. Zhang, W. Liang, S. Kuga, Z. Dong, Y. Zhao, Y. Huang, M. Wu, J. Mater. Chem. A 6, 24468–24478 (2018)

    CAS  Google Scholar 

  22. G. Kumar, D.T.K. Dora, D. Jadav, A. Naudiyal, A. Singh, T. Roy, J. Clean. Prod. 298, 126744 (2021)

    Google Scholar 

  23. C. Jin, S. Han, J. Li, Q. Sun, Carbohydr. Polym. 123, 150–156 (2015)

    CAS  PubMed  Google Scholar 

  24. I.C. Carvalho, Mater. Sci. Eng. C 78, 690–705 (2017)

    CAS  Google Scholar 

  25. C. Demitri, F. Scalera, R. Del Sole, A. Sannino, G. Vasapollo, A. Maffezzoli, L. Ambrosio, L. Nicolais, J. OfAppliedPolymer Sci. 110, 2453–2460 (2008)

    CAS  Google Scholar 

  26. H.W. Leung, Ecotoxicol. Environ. Saf. 49, 26–39 (2001)

    CAS  PubMed  Google Scholar 

  27. M. Kaya, J. Appl. Polym. Sci. 134, 1–9 (2017)

    Google Scholar 

  28. S. Chaudhary, D.T.K. Dora, D.S. Reddy, S.K. Porwal, Biomass Convers. Refin. (2022). https://doi.org/10.1007/s13399-022-02306-6

    Article  Google Scholar 

  29. X. Wang, Q. Xu, L. Zhang, L. Pei, H. Xue, Z. Li, J. Environ. Chem. Eng. 11, 109206 (2023)

    CAS  Google Scholar 

  30. X. Wang, A. Zhang, M. Chen, M.K. Seliem, M. Mobarak, Z. Diao, Z. Li, Chem. Eng. J. 473, 145385 (2023)

    CAS  Google Scholar 

  31. C. Feng, P. Ren, Z. Li, W. Tan, H. Zhang, Y. Jin, F. Ren, New. J. Chem. 44, 2256 (2020)

    CAS  Google Scholar 

  32. F. Ren, Z. Li, W.Z. Tan, X.H. Liu, Z.F. Sun, P.G. Ren, D.X. Yan, J. Colloid Interface Sci. 532, 58–67 (2018)

    CAS  PubMed  Google Scholar 

  33. L. Liang, S. Zhang, G.A. Goenaga, X. Meng, T.A. Zawodzinski, A.J. Ragauskas, Front. Chem. 8, 1–91 (2020)

    CAS  Google Scholar 

  34. X. Pang, L. Sellaoui, D. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Chem. Eng. J. 378, 122101 (2019)

    CAS  Google Scholar 

  35. C. Arenas, Sound Vib. 44, 12–17 (2010)

    Google Scholar 

  36. Y. Zhang, B. Zhang, Z. Shan, J. Appl. Polym. Sci. 135, 46332 (2018)

    Google Scholar 

  37. D.T. Tran, S.T. Nguyen, N.D. Do, N.N.T. Thai, Q.B. Thai, H.K.P. Huynh, V.T.T. Nguyen, A.N. Phan, Mater. Chem. Phys. 253, 123363 (2020)

    CAS  Google Scholar 

  38. H. Pu, X. Ding, H. Chen, R. Dai, Z. Shan, Environ. Technol. Innov. 24, 101874 (2021)

    CAS  Google Scholar 

  39. Y. Wang, Y. Li, X. Zhang, H. Zheng, J. Polym. Environ. 28, 200–210 (2020)

    CAS  Google Scholar 

  40. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, J. Mol. Liq. 273, 425–434 (2019)

    CAS  Google Scholar 

  41. T.K. Dora, Y.K. Mohanty, G.K. Roy, B. Sarangi, J. Environ. Chem. Eng. 1, 150–158 (2013)

    CAS  Google Scholar 

  42. D.T.K. Dora, Y.K. Mohanty, G.K. Roy, Powder Technol. 237, 594–601 (2013)

    CAS  Google Scholar 

  43. D.T.K. Dora, Y.K. Mohanty, G.K. Roy, Chem. Eng. Sci. 79, 210–218 (2012)

    CAS  Google Scholar 

  44. S.K. Vineeth, R.V. Gadhave, P.T. Gadekar, Mater. Int. 2, 0277–0285 (2020)

    Google Scholar 

  45. K.R. Parmar, D.T.K. Dora, K.K. Pant, S. Roy, J. Hazard. Mater. 375, 206–215 (2019)

    CAS  PubMed  Google Scholar 

  46. W. Zhu, X. Jiang, K. Jiang, F. Liu, F. You, C. Yao, Nanomaterials (2021). https://doi.org/10.3390/nano11061609

    Article  PubMed  PubMed Central  Google Scholar 

  47. Y. Rong, Y. Huang, P. Jin, C. Yang, Z. Zhong, C. Dong, W. Liang, J. Water Process. Eng. 37, 101345 (2020)

    Google Scholar 

  48. P. Verma, S.K. Samanta, S. Mishra, J. Environ. Chem. Eng. 8, 103851 (2020)

    CAS  Google Scholar 

  49. M. Termoul, B. Bestani, N. Benderdouche, M. Belhakem, E. Naffrechoux, Adsorpt. Sci. Technol. 24, 375–387 (2006)

    CAS  Google Scholar 

  50. H. Li, V.L. Budarin, J.H. Clark, M. North, X. Wu, J. Hazard. Mater. 436, 129174 (2022)

    CAS  PubMed  Google Scholar 

  51. D. Gago, R. Chagas, M. Ferreira, S. Velizarov, I. Coelhoso, Membranes (2020). https://doi.org/10.3390/membranes10010013

    Article  PubMed  PubMed Central  Google Scholar 

  52. Q. Lin, M. Gao, J. Chang, H. Ma, J. Appl. Polym. Sci. 134, 1–11 (2017)

    Google Scholar 

  53. N. Kannan, M.M. Sundaram, Dye. Pigment. 51, 25–40 (2001)

    CAS  Google Scholar 

  54. M. Chen, Y. Shen, L. Xu, G. Xiang, Z. Ni, Colloids Surf. Physicochem Eng Asp. 613, 126050 (2021)

    CAS  Google Scholar 

  55. X. Tang, X. Yan, Compos. Part. A Appl. Sci. Manuf. 101, 360–380 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors kindly acknowledged the CSIR-Central Building Research Institute, Uttarakhand, India, for sound absorption testing.

Funding

This work was supported by Seed Money Grant ‘DITU/R&D/2022/016/Chemistry’ received from DIT University Dehradun.

Author information

Authors and Affiliations

Authors

Contributions

SC: Investigation, data curation, validation and writing—original draft. TKD: conceptualization, methodology, validation, formal analysis, writing—review and editing, visualization and supervision SKP: conceptualization, methodology, validation, formal analysis, writing—review and editing, visualization and supervision.

Corresponding author

Correspondence to Suheel K Porwal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3621.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Dora, D.T.K. & Porwal, S.K. Mesoporous composite aerogel derived from cellulosic waste for efficient adsorption and eco-friendly degradation of cationic dye. J Porous Mater 31, 423–435 (2024). https://doi.org/10.1007/s10934-023-01531-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01531-2

Keywords

Navigation