Skip to main content
Log in

Effects of particle size and sintering atmosphere on the structure and performance of 316L/SiC composite hollow fiber membranes

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

316L stainless steel hollow fiber membranes (HFs) are alternatives for polymer and ceramic based membranes. Chemical and waste treatment industries are application areas of HFs and they are used as particle filter of liquid and gas separations. Hollow fiber membranes were produced by dry–wet spinning technique which is one of the production methods of HFs. The aim of the study is to produce metal matrix composite (316L+SiC) hollow fiber membranes using different particle sizes (coarse, fine and their mixture) and sintering them by different sintering atmospheres (argon and nitrogen/hydrogen), and to examine the chemical compositions, electrical resistivity, pore amount, average pore size and pore shape and distribution. The hollow fibers are then subjected to a 3-point bending test to determine their mechanical properties. Gas permeation tests were also used to characterize the hollow fiber membranes. HFs produced from coarse particles show lower densification. On the other hand, the finest particle size gives the highest bending strength and bending deflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Aslan, Membran teknolojileri (T.C. Çevre ve Şehircilik Bakanlığı, Ankara, 2016)

    Google Scholar 

  2. S. Lopez, D.R. Smart, E.H.M. Nunes, D. Vasconcelos, W.L. Vasconcelos, M. Bram, W.A. Meulenberg, J.C. Diniz Da Costa, Stainless steel hollow fibres-sintering, morphology and mechanical properties. Sep. Purif. Technol. 147, 379–387 (2015)

    Article  Google Scholar 

  3. F.M. Allioux, O. David, M.E. Benavides, L. Kong, D.A.P. Tanaka, L.F. Dumée, Preparation of porous stainless steel hollow-fibers through multi-modal particle size sintering towards pore engineering. Membranes 7(3), 40 (2017)

    Article  Google Scholar 

  4. B.F.K. Kingsbury, K. Li, A morphological study of ceramic hollow fibre membranes. J. Membr. Sci. 328, 134–140 (2009)

    Article  CAS  Google Scholar 

  5. J. Li, L. Wang, Y. Hao et al., Preparation and characterization of Al2O3 hollow fiber membranes. J. Membr. Sci. 256, 1–6 (2005)

    CAS  Google Scholar 

  6. X. Tan, S. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes. J. Membr. Sci. 188, 87–95 (2001)

    Article  CAS  Google Scholar 

  7. L.F. Dumée, L. He, Z. Wang, P. Sheath, J. Xiong, C. Feng, M.Y. Tan, F. She, M. Duke, S. Gray, Growth of nano-textured graphene coatings across highly porous stainless steel supports towards corrosion resistant coatings. Carbon 87, 395–408 (2015)

    Article  Google Scholar 

  8. A. Cassano, N.K. Rastogi, A. Basile, Advances in Membrane Technologies for Water Treatment (Woodhead Publishing, Oxford, 2015), pp. 551–580

    Book  Google Scholar 

  9. M.W.J. Luiten-Olieman, L. Winnubst, A. Nijmeijer, M. Wessling, N.E. Benes, Porous stainless steel hollow fiber membranes via dry-wet spinning. J. Membr. Sci. 370, 124–130 (2011)

    Article  CAS  Google Scholar 

  10. D.R. Schmeda-Lopez, S. Smart, W.A. Meulenberg, J.C. Diniz da Costa, Mixed matrix carbon stainless steel (MMCSS) hollow fibres for gas separation. Sep. Purif. Technol. 174, 150–158 (2017)

    Article  CAS  Google Scholar 

  11. Q. Zhong, Z.L. Xu, X. Ma, M. Wang, Modification of porous stainless steel hollow fibers by adding TiO2, ZrO2 and SiO2 nano particles. J. Porous Mater. 23(3), 1529–1536 (2016)

    Google Scholar 

  12. E. Klar, P.K. Samal, Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties (ASM International, Materials Park, 2007), p. 256

    Book  Google Scholar 

  13. D. Schmeda-Lopez, S. Smart, H.M. Eduardo, D. Vasconcelos, W.M. Vasconcelos, W. Meulenberg, J. Diniz Da Costa, Stainless steel hollow fibres—sintering, morphology and mechanical properties. Sep. Purif. Technol. 147, 381–389 (2015)

    Article  Google Scholar 

  14. T. Kato, K. Kusaka, On some properties of sintered stainless steels at elevated temperatures. Powder Metall. 27(5), 2–8 (1980)

    Google Scholar 

  15. O. Ertugrul, H.S. Park, M. Willert-Porada, Effect of particle size and heating rate in microwave sintering of 316L stainless steel. Powder Technol. 253, 703–709 (2014)

    Article  CAS  Google Scholar 

  16. W. Rui, C. Zhang, C. Cai, X. Gu, Effects of sintering atmospheres on properties of stainless steel porous hollow fiber membranes. J. Membr. Sci. 489, 90–97 (2015)

    Article  CAS  Google Scholar 

  17. B. Michielsen, H. Chen, M. Jacobs, Preparation of porous stainless steel hollow fibers by robotic fiber deposition. J. Membr. Sci. 437, 17–24 (2013)

    Article  CAS  Google Scholar 

  18. C. Garcia, F. Martin, P. Tiedra, L.G. Cambronero, Pitting corrosion behaviour of PM austenitic stainless steels sintered in nitrogen–hydrogen atmosphere. Corros. Sci. 49, 1718–1736 (2007)

    Article  CAS  Google Scholar 

  19. P. Samal, J. Pannell, U. Engstro¨m, O. Mars, Austenitic stainless steels with enhanced mechanical strength, European powder metallurgy association (EPMA). Proceedings of World PM Conference Italy, 2010. p. 1–8

  20. O. Ertugrul, H.S. Park, K. Onel, M. Willert-Porada, Structure and properties of sic and emery powder reinforced PM 316l matrix composites produced by microwave and conventional sintering. Powder Metall. 58, 41–50 (2015)

    Article  CAS  Google Scholar 

  21. R. Mariappan, S. Kumaran, T.S. Rao, Effect of sintering atmosphere on structure and properties of austeno-ferritic stainless steels. Mater. Sci. Eng. A A517, 328–333 (2009)

    Article  CAS  Google Scholar 

  22. H. Arık, Investigation of wear properties of Al-SiC composite materials produced by powder metallurgy method. Fen Bilimleri Dergisi 7, 741–754 (2019)

    Google Scholar 

  23. S.N. Patankar, M. Chandrasekaran, M.J. Tan, Matrix reinforcement interaction in SiC/316L stainless steel composite. J. Mater. Sci. Lett. 19, 613–615 (2000)

    Article  CAS  Google Scholar 

  24. S. Mima, T. Yodkaew, M. Morakotjinda, N. Tosangthum, N. Daraphan, R. Krataitong, O. Coovattanachai, B. Vetayanugul, R. Tongsri (2006) The Fourth Thailand Materials Science and Technology Conference. Accessed from http://www2.mtec.or.th/th/seminar/msativ/pdf/m07.pdf

  25. T. Türker, Gümüş nanopartiküller ile kompozit ince boşluklu fiber (Hollow Fiber) membran üretimi, Karakterizasyonu ve Uygulaması: İstanbul Teknik Üniversitesi, (2013)

  26. R. Tongsri, B. Vetayanugul, Thermal analysis of Fe–carbide and Fe–C mixtures. J. Met. Mater. Miner. 20, 45–49 (2010)

    CAS  Google Scholar 

  27. H.W. Zhang, Z.K. Hei, G. Liu, Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 51, 1871–1881 (2003)

    Article  CAS  Google Scholar 

  28. E. Şahin, O. Ertuğrul, Ö. Yücel, Influence of particle size on the structure and properties of 316L hollow fiber membranes sintered under argon atmosphere. Düzce Univ. J. Sci. Technol. 9, 625–635 (2021)

    Google Scholar 

  29. H. Li, J. Song, X. Tan, Y. Jin, S. Liu, Preparation of spiral porous stainless steel hollow fiber membranes by a modified phase inversion–sintering technique. J. Membr. Sci. 489, 292–298 (2015)

    Article  CAS  Google Scholar 

  30. E. Şahin, Production and Characterization of 316L and 316L/SiC Hollow Fiber Membranes Sintered in Various Atmospheres (İzmir Katip Çelebi University, Graduate School of Natural and Applied Sciences, İzmir, 2021)

    Google Scholar 

Download references

Acknowledgements

This study was funded by a Scientific Research Project of İzmir Katip Çelebi University. Project No. is 2018-GAP-MÜMF-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezgi Şahin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, E., Ertuğrul, O. & Yücel, Ö. Effects of particle size and sintering atmosphere on the structure and performance of 316L/SiC composite hollow fiber membranes. J Porous Mater 29, 827–836 (2022). https://doi.org/10.1007/s10934-022-01213-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01213-5

Keywords

Navigation