Skip to main content
Log in

Effect of Bore Fluid Conditions on Structures and Properties of Poly(m-phenylene isophthalamide) Hollow Fiber Membranes

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study investigates the effects of bore fluid composition on the morphological characterization, mechanical properties, and membrane performance of poly(m-phenylene isophthalamide) (PMIA) hollow fiber membranes prepared by a dry-jet wet spinning method using a non-solvent induced phase separation (NIPS), as an attempt to manufacture and apply high-performance membranes. Scanning electron microscopy (SEM) analysis reveals that the addition of DMAc (or NMP) to the internal coagulant (bore fluid) based on deionized water induces a transition from finger-like to sponge-like pore structures in the final PMIA membranes. Mechanical properties analysis shows an increase in tensile strength and a decrease in elongation at break as the additive content in the bore fluid increases. Water permeability and rejection analysis present a trade-off trends, with higher additive content leading to reduced water permeability and increased rejection. In other words, despite the consistent changes observed in pore structure with changes in additive type and content in the bore fluid, achieving an optimal balance between high water permeability and low rejection remains a challenge through these structural control and changes. Therefore, for the development and application of high-performance PMIA-based hollow fiber membranes, it is necessary to control and optimize the pore structure of the final PMIA membrane through extensive research on various process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. UN, Transforming Our World: The 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda, New York, US (2015).

  2. X. Garcia, D. Pargament, Resour. Conserv. Recycl. 101, 154 (2015)

    Article  Google Scholar 

  3. M. Capocelli, M. Prisciandaro, V. Piemonte, D. Barba, J. Clean. Prod. 207, 85 (2019)

    Article  CAS  Google Scholar 

  4. V.G. Gude, Water Res. 89, 87 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. S.M.A. de Guelli Ulson Souza, M.F. Xavier, A. da Silva, A.A.U. de Souza, Ind. Eng. Chem. Res. 50, 7428 (2011)

    Article  Google Scholar 

  6. J.J. Klemeš, Curr. Opin. Chem. Eng. 1, 238 (2012)

    Article  Google Scholar 

  7. A. Yusuf, A. Sodiq, A. Giwa, J. Eke, O. Pikuda, G.D. Luca, J.L. Di Salvo, S. Chakraborty, J. Clean. Prod. 266, 121867 (2020)

    Article  CAS  Google Scholar 

  8. X. Zhang, Y. Yang, H.H. Ngo, W. Guo, H. Wen, X. Wang, J. Zhang, T. Long, Sci. Total Environ. 785, 147254 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. L.A. Melnik, D.A. Krysenko, J. Water Chem. Technol. 41, 143 (2019)

    Article  Google Scholar 

  10. T. Arumugham, N.J. Kaleekkal, S. Gopal, J. Nambikkattu, K. Rambabu, A.M. Aboulella, S.R. Wickramasinghe, F. Banat, J. Environ. Manag. 293, 112925 (2021)

    Article  CAS  Google Scholar 

  11. Y.H. Teow, Y.H. Chiah, K.C. Ho, E. Mahmoudi, J. Clean. Prod. 337, 130569 (2022)

    Article  CAS  Google Scholar 

  12. S. Martini, J. Rekayasa Kim. Lingkung. 17, 83 (2022)

    Article  Google Scholar 

  13. Z. He, Z. Lyu, Q. Gu, L. Zhang, J. Wang, Colloids Surf. A Physicochem. Eng. Asp. 578, 123513 (2019)

    Article  CAS  Google Scholar 

  14. A. Abdullayev, M.F. Bekheet, D.A.H. Hanaor, A. Gurlo, Membranes 9, 105 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Bassyouni, M.H. Abdel-Aziz, MSh. Zoromba, S.M.S. Abdel-Hamid, E. Drioli, J. Ind. Eng. Chem. 73, 19 (2019)

    Article  CAS  Google Scholar 

  16. F. Tibi, A. Charfi, J. Cho, J. Kim, Process Saf. Environ. Prot. 141, 190 (2020)

    Article  CAS  Google Scholar 

  17. R. Roshania, F. Ardeshiribc, M. Peyravi, M. Jahanshahi, RSC Adv. 8, 234999 (2018)

    Google Scholar 

  18. T.A. Agbaje, S. Al-Gharabli, M.O. Mavukkandy, J. Kujawa, H.A. Arafat, Desalination 436, 69 (2018)

    Article  CAS  Google Scholar 

  19. L. Meng, Y. Lv, P. Deng, N. Li, M. Huang, J. Mansouri, V. Chen, Chem. Eng. J. 415, 128960 (2021)

    Article  CAS  Google Scholar 

  20. S.C. Mamah, P.S. Goh, A.F. Ismail, N.D. Suzaimi, L.T. Yogarathinam, Y.O. Raji, T.H. El-badawy, J. Water Process Eng. 40, 101835 (2021)

    Article  Google Scholar 

  21. S. Wongchitphimon, R. Wang, R. Jiraratananon, L. Shi, C.H. Loh, J. Membrane. Sci. 369, 329 (2011)

    Article  CAS  Google Scholar 

  22. Z. Yuan, X.D. Li, Desalination 223, 438 (2008)

    Article  Google Scholar 

  23. A.J. Jose, J. Kappen, M. Alagar, Fundam. Biomater. Polym. 2018, 21 (2018)

    Article  Google Scholar 

  24. X. Dong, D. Lu, T.A.L. Harris, I.C. Escobar, Membranes 11, 309 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Z. Cui, N.T. Hassankiadeh, S.Y. Lee, J.M. Lee, K.T. Woo, A. Sanguineti, V. Arcella, Y.M. Lee, E. Drioli, J. Membrane Sci. 444, 223 (2013)

    Article  CAS  Google Scholar 

  26. S. Rajabzadeh, T. Maruyama, T. Sotani, H. Matsuyama, Sep. Purif. Technol. 63, 415 (2008)

    Article  CAS  Google Scholar 

  27. H.H. Wang, J.T. Jung, J.F. Kim, S. Kim, E. Drioli, Y.M. Lee, J. Membrane Sci 574, 44 (2019)

    Article  Google Scholar 

  28. S. Zhao, Z. Wang, J. Wang, S. Wang, J. Membrane Sci. 469, 316 (2014)

    Article  CAS  Google Scholar 

  29. C. Cohen, G.B. Tanny, S. Prager, J. Polym. Sci. Polym. Phys. Ed. 17, 477 (1979)

    Article  CAS  Google Scholar 

  30. P. Witte, P.J. Dijkstra, J.W.A. Berg, J. Feijen, J. Membrane Sci. 117, 1 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a research Grant from the Ministry of Trade, Industry and Energy (MOTIE, Project No. 20010447), and we gratefully acknowledge for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Ho Jee or Doo Hyun Baik.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, HW., Kim, D.W., Jee, M.H. et al. Effect of Bore Fluid Conditions on Structures and Properties of Poly(m-phenylene isophthalamide) Hollow Fiber Membranes. Fibers Polym 24, 3457–3465 (2023). https://doi.org/10.1007/s12221-023-00325-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00325-2

Keywords

Navigation