Skip to main content
Log in

Comprehensive Study of Morphological Modification of Dual-Layer Hollow Fiber Membrane

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The NiO–YSZ/LSCF–YSZ dual-layer hollow fiber membrane receives increasing attention which is due liable to quick changes in properties during co-extrusion followed by the co-sintering method. The effect of mixed bore liquid of water + ethanol + n-methyl-2-pyrrolidone and co-sintering temperature on physical and chemical characteristics of the obtained membrane was systematically explored in this study. Here, the characterization of the membrane was inspected using scanning electron microscope–energy-dispersive X-ray, three-point bending, mercury porosimetry, X-ray diffraction and nitrogen tightness tests as well as the oxygen permeation test. Results indicated that membrane prepared using 100% water as a bore liquid produced a sandwich structure. On the contrary, by employing 40:10:50% of water/ethanol/NMP as a mixed bore liquid and sintering for 8 h at 1300 °C, an open-channel structure in the microstructure gives a good porosity as tested using mercury porosimetry, mechanical properties and nitrogen permeability with no secondary phases. In addition, the co-sintering effect was examined by increasing temperature to 1400 and 1500 °C. However, an impurity phase of LaZr2O7 was formed which is due to the chemical reaction of La and Sr into YSZ structure. Oxygen permeate concentration through the dual-layer membrane was found to be slightly different as compared to the single-layer hollow fiber membrane. The results further suggest that the outer layer should be tighter and thinner to enhance the oxygen ion diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Shelepova, E.; Vedyagin, A.; Sadykov, V.; Mezentseva, N.; Fedorova, Y.; Smorygo, O.; Klenov, O.; Mishakov, I.: Theoretical and experimental study of methane partial oxidation to syngas in catalytic membrane reactor with asymmetric oxygen-permeable membrane. Catal. Today 268, 103–110 (2016)

    Article  Google Scholar 

  2. Tan, X.; Liu, Y.; Li, K.: Preparation of LSCF ceramic hollow-fiber membranes for oxygen production by a phase-inversion/sintering technique. Ind. Eng. Chem. Res. 44, 61–66 (2005)

    Article  Google Scholar 

  3. Dai, X.; Yu, C.; Wu, Q.: Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane. J. Nat. Gas Chem. 17, 415–418 (2008)

    Article  Google Scholar 

  4. Wu, Z.; Wang, B.; Li, K.: A novel dual-layer ceramic hollow fibre membrane reactor for methane conversion. J. Memb. Sci. 352, 63–70 (2010)

    Article  Google Scholar 

  5. Mohamed, M.H.; Othman, M.H.D.; Abd Mutalib, M.; Rahman, M.; Jaafar, J.; Ismail, A.F.; Dzahir, M.I.H.: Structural control of NiO–YSZ/LSCF–YSZ dual-layer hollow fiber membrane for potential syngas production. Int. J. Appl. Ceram. Technol. 13, 799–809 (2016)

    Article  Google Scholar 

  6. Witte, P.; Dijkstra, P.J.J.; Berg, J.W.; Feijen, J.: Phase separation processes in polymer solutions in relation to membrane formation. J. Memb. Sci. 117, 1–31 (1996)

    Article  Google Scholar 

  7. Li, L.; Chen, M.; Dong, Y.; Dong, X.; Cerneaux, S.; Hampshire, S.; Cao, J.; Zhu, L.; Zhu, Z.; Liu, J.: A low-cost alumina-mullite composite hollow fiber ceramic membrane fabricated via phase-inversion and sintering method. J. Eur. Ceram. Soc. 36, 2057–2066 (2016)

    Article  Google Scholar 

  8. Tan, X.; Liu, N.; Meng, B.; Liu, S.: Morphology control of the perovskite hollow fibre membranes for oxygen separation using different bore fluids. J. Memb. Sci. 378, 308–318 (2011)

    Article  Google Scholar 

  9. Tan, X.; Shi, L.; Hao, G.; Meng, B.; Liu, S.: La0.7Sr0.3FeO3−α perovskite hollow fiber membranes for oxygen permeation and methane conversion. Sep. Purif. Technol. 96, 89–97 (2012)

    Article  Google Scholar 

  10. Yang, N.T.; Kathiraser, Y.; Kawi, S.: A new asymmetric SrCo0.8Fe0.1Ga0.1O3−δ perovskite hollow fiber membrane for stable oxygen permeability under reducing condition. J. Memb. Sci. 428, 78–85 (2013)

    Article  Google Scholar 

  11. Li, K.; Tan, X.; Liu, Y.: Single-step fabrication of ceramic hollow fibers for oxygen permeation. J. Memb. Sci. 272, 1–5 (2006)

    Article  Google Scholar 

  12. Shao, Z.; Xiong, G.; Cong, Y.; Yang, W.: Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8−xO3−δ ceramic membranes. J. Memb. Sci. 164, 167–176 (2000)

    Article  Google Scholar 

  13. Park, S.; Choi, S.; Kim, J.; Shin, J.; Kim, G.: Strontium doping effect on high-performance PrBa1−xSrxCo2O5+δ as a cathode material for IT-SOFCs. ECS Electrochem. Lett. (2012). https://doi.org/10.1149/2.007205eel

    Article  Google Scholar 

  14. Nurherdiana, S.D.; Sholichah, N.; Iqbal, R.M.; Sahasrikirana, M.S.; Utomo, W.P.; Akhlus, S.; Fansuri, H.: Preparation of La0.7Sr0.3Co0.2Fe0.8O3−δ (LSCF 7328) by combination of mechanochemical and solid state reaction. Key Eng. Mater. 744, 399–403 (2017)

    Article  Google Scholar 

  15. Iqbal, R.M.; Nurherdiana, S.D.; Sahasrikirana, M.S.; Harmelia, L.; Utomo, W.P.; Setyaningsih, E.P.; Fansuri, H.: The compatibility of NiO, CeO2 and NiO–CeO2 as a Coating on La0.6Sr0.4Co0.2Fe0.8O3−δ, La0.7Sr0.3Co0.2Fe0.8O3−δ and La0.7Sr0.3Mn0.3O3−δ ceramic membrane and their mechanical properties. IOP Conf. Ser. Mater. Sci. Eng. (2018). https://iopscience.iop.org/article/10.1088/1757-899X/367/1/012032. Accessed 31 Jan 2019.

  16. Chi, Y.; Li, T.; Wang, B.; Wu, Z.; Li, K.: Morphology, performance and stability of multi-bore capillary La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen transport membranes. J. Memb. Sci. 529, 224–233 (2017)

    Article  Google Scholar 

  17. Sajidah, H.B.N.; Nurherdiana, S.D.; Utomo, W.P.; Iqbal, R.M.; Hartanto, D.; Othman, M.H.D.; Fansuri, H.: Preparation and characterization of dual-layer hollow fibre catalyst membrane for oxygen transport. AIP Conf. Proc. (2018). https://aip.scitation.org/doi/abs/10.1063/1.5082495. Accessed 31 Jan 2019

  18. Wit, P.; Daalen, F.S.; Benes, N.E.: The mechanical strength of a ceramic porous hollow fiber. J. Memb. Sci. 524, 721–728 (2017)

    Article  Google Scholar 

  19. Othman, M.H.D.; Droushiotis, N.; Wu, Z.; Kelsall, G.; Li, K.: Dual-layer hollow fibres with different anode structures for micro-tubular solid oxide fuel cells. J. Power Sources 205, 272–280 (2012)

    Article  Google Scholar 

  20. Rahman, M.A.; Ha, M.; Othman, D.; Ismail, A.F.: Morphological study of yttria-stabilized zirconia hollow fibre membrane prepared using phase inversion/sintering technique. Cer. Int. 41, 12543–12553 (2015)

    Article  Google Scholar 

  21. Wang, Z.; Yang, N.; Meng, B.: Preparation and oxygen permeation properties of highly asymmetric La0.6Sr0.4Co0.2Fe0.8O3−α perovskite hollow-fiber membranes. Ind. Eng. Chem. Res. 48, 510–516 (2008)

    Article  Google Scholar 

  22. Innocenzi, P.; Malfatti, L.; Costacurta, S.; Kidchob, T.; Piccinini, M.; Marcelli, A.: Evaporation of ethanol and ethanol–water mixtures studied by time-resolved infrared spectroscopy. J Phys Chem 112, 6512–6516 (2008)

    Article  Google Scholar 

  23. Delbos, C.; Lebain, G.; Richet, N.; Bertail, C.: Performances of tubular La0.8Sr0.2Fe0.7Ga0.3O3−δ mixed conducting membrane reactor for under pressure methane conversion to syngas. Catal. Today. 156, 146–152 (2010)

    Article  Google Scholar 

  24. Wu, Z.; Wang, B.; Li, K.: Functional LSM-ScSZ/NiO-ScSZ dual-layer hollow fibres for partial oxidation of methane. Int. J. Hydrogen Energy 36, 5334–5341 (2011)

    Article  Google Scholar 

  25. Ahmad, S.H.; Jamil, S.M.; Othman, M.H.D.; Rahman, M.A.; Jaafar, J.; Ismail, A.F.: Co-extruded dual-layer hollow fiber with different electrolyte structure for a high temperature micro-tubular solid oxide fuel cell. Int. J. Hydrogen Energy 42, 9116–9124 (2017)

    Article  Google Scholar 

  26. Iqbal, R.M.; Nurherdiana, S.D.; Hartanto, D.; Othman, M.H.D.; Fansuri, H.: Morphological control of La0.7Sr0.3Co0.2Fe0.8O3−δ and La0.7Sr0.3MnO3−δ catalytic membrane using PEG-H2O additive. IOP Conf. Ser. Mater. Sci. Eng. (2018). https://iopscience.iop.org/article/10.1088/1757-899X/348/1/012008. Accessed 31 Jan 2019.

  27. Sandoval, M.V.; Matta, A.; Matencio, T.; Domingues, R.Z.; Ludwig, G.A.; De Angelis Korb, M.; De Fraga Malfatti, C.; Gauthier-Maradei, P.; Gauthier, G.H.: Barium-modified NiO–YSZ/NiO–GDC cermet as new anode material for solid oxide fuel cells (SOFC). Solid State Ionics 261, 36–44 (2014)

    Article  Google Scholar 

  28. Tan, X.; Wang, Z.; Liu, H.; Liu, S.: Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fibre membranes by surface modifications. J. Memb. Sci. 324, 128–135 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Directorate General of Higher Education, Indonesian Ministry of Research, Technology and Higher Education in the form of PMDSU scholarship and research grant with contract number 128/SP2H/PTNBH/DRPM/2018. The authors would also like to thank Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamzah Fansuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurherdiana, S.D., Utomo, W.P., Sajidah, H.B.N. et al. Comprehensive Study of Morphological Modification of Dual-Layer Hollow Fiber Membrane. Arab J Sci Eng 44, 10041–10055 (2019). https://doi.org/10.1007/s13369-019-04057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04057-5

Keywords

Navigation