Skip to main content

Advertisement

Log in

Periodic 3D nanoporous silica modified by amine or SPION nanoparticles as NSAID delivery system

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Nonsteroidal anti-inflammatory drug (NSAID) indomethacin (indo) was loaded into cubic nanoporous silica SBA-16 modified by amine groups (A-SBA-16) or hematite SPIONs (Fe-SBA-16). The kinetic of the indomethacin release into physiological solution with pH = 7.4 was studied. After 72 h the released amount represented 91 % of the loaded amount for the unmodified SBA-16 and 63 % for the amine modified one. To study vectored drug delivery to the affected body organs with the assistance of magnetic field, SBA-16 was modified by Fe2O3 SPION nanoparticles and the magnetic properties of the sample were investigated by SQIUD magnetometry. The results show on superparamagnetic behaviour of the composite sample Fe-SBA-16 at room temperature with the value of effective magnetic moment m p  ~ 384 μ B . It was shown that the superparamagnetic behaviour of Fe-SBA-16 did not change after the indomethacin incorporation. The kinetic of the drug release from the Fe-SBA-16/indo sample was similar to the SBA-16/indo sample in the first 50 h. However, the total released amount after the 72 h was for the Fe-SBA-16/indo sample lower (68 % of the loaded amount), indicating the stronger interaction of the drug with the porous carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Jyrkka, J. Mursu, H. Enlund, Polypharmacy and nutritional status in elderly people. Curr. Opin. Clin. Nutr. 15, 1–6 (2012)

    Article  Google Scholar 

  2. M. Zhang, C.D.J. Holman, D.B. Preen, K.J. Brameld, Repeat adverse drug reactions causing hospitalization in older Australians: a population-based longitudinal study 1980–2003. Br. J. Clin. Pharmacol. 63, 163–170 (2007)

    Article  Google Scholar 

  3. S. Kwon, R.K. Singh, R.A. Perez, Silica-based mesoporous nanoparticles for controlled drug delivery. J. Tissue Eng. 4, 1–18 (2013)

    Article  Google Scholar 

  4. J. Wong, A. Brugger, A. Khare, Suspensions for intravenous (IV) injection: A review of development, preclinical and clinical aspects. Adv. Drug Deliv. Rev. 60, 939–954 (2008)

    Article  CAS  Google Scholar 

  5. R.A. Jain, The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices. Biomaterials 21, 2475–2490 (2000)

    Article  CAS  Google Scholar 

  6. Y.J. Kim, S. Choi, J.J. Koh, Controlled release of insulin from injectable biodegradable triblock copolymer. Pharm. Res. 18, 548–550 (2001)

    Article  CAS  Google Scholar 

  7. R. Arshady, Preparation of biodegradable microspheres and microcapsules: 2. Polyactides and related polyesters. J. Control Release 17, 1–21 (1991)

    Article  CAS  Google Scholar 

  8. F. Fenaroli, D. Westmoreland, J. Benjaminsen, Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: direct visualization and treatment. ACS Nano 8, 7014–7026 (2014)

    Article  CAS  Google Scholar 

  9. R. Mo, T. Jiang, Z. Gu, Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew. Chem. 126, 5925–5930 (2014)

    Article  Google Scholar 

  10. A.M. Caminade, F.O. Turrina, Dendrimers for drug delivery. J. Mater. Chem. B. 2, 4055–4066 (2014)

    Article  CAS  Google Scholar 

  11. I. Slowing, J. Vivero-Escoto, C.W. Wu, V.S. Lin, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008)

    Article  CAS  Google Scholar 

  12. Z. Li, J.C. Barnes, A. Bosoy, Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012)

    Article  CAS  Google Scholar 

  13. F. Gao, P. Botella, A. Corma, Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J. Phys. Chem B. 113, 17961804 (2009)

    Google Scholar 

  14. M.V. Regí, A. Rámila, R.P. Real, J.P. Pariente, A new property of MCM-41: drug delivery system. Chem. Mater. 13, 308–311 (2001)

    Article  Google Scholar 

  15. A. Rámila, B. Munoz, J.P. Pariente, M.V. Regí, Mesoporous MCM-41 as drug host system. J. Sol–Gel. Sci. Technol. 26, 1199–1202 (2003)

    Article  Google Scholar 

  16. B. Munoz, A. Rámila, J.P. Pariente, I. Díaz, M.V. Regí, MCM-41 organic modification as drug delivery system. Chem. Mater. 15, 500–503 (2003)

    Article  CAS  Google Scholar 

  17. P. Horcajada, A. Rámila, J.P. Pariente, M.V. Regí, Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater. 68, 105–109 (2004)

    Article  CAS  Google Scholar 

  18. M. Manzano, V. Aina, C.O. Areán, F. Balas, V. Cauda, M. Collila, M.R. Delgado, M.V. Regí, Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. J. Chem. Eng. 137, 30–37 (2008)

    Article  CAS  Google Scholar 

  19. A.L. Doadrio, E.M.B. Sousa, J.C. Doadrio, J.P. Pariente, I. Barba, M.V. Regí, Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J. Control Release 97, 125–132 (2004)

    Article  CAS  Google Scholar 

  20. J.C. Doadrio, E.M.B. Sousa, I.B. Isabel, A.L. Doadrio, J.P. Pariente, M.V. Regí, Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J. Mater. Chem. 16, 462–466 (2006)

    Article  CAS  Google Scholar 

  21. C. Airoldi, V.V. Oliveira, Hydrophobic contribution to amoxicillin release associated with organofunctionalized mesoporous SBA-16 carriers. Mater. Res. Bull. 59, 214–222 (2014)

    Article  CAS  Google Scholar 

  22. A. Kiwilsza, B. Milanowski, K. Druzbicki, L.E. Coy, M. Grzeszkowiak, M. Jarek, J. Mielcarek, J. Lulek, A. Pajzderska, J. Wasicki, Mesoporous drug carrier systems for enhanced delivery rate of poorly water-soluble drug: nimodipine. J. Porous Mater. 22, 817–829 (2015)

    Article  CAS  Google Scholar 

  23. Q.Z. Zhai, Y.Y. Wu, X.H. Wang, Synthesis, characterization and sustaining controlled release effect of mesoporous SBA-15/ramipril composite drug. J. Incl. Phenom. Macrocycl. Chem. 77, 113–120 (2013)

    Article  CAS  Google Scholar 

  24. J. Shen, G. Song, M. An, X. Li, N. Wu, K. Ruan, J. Hu, R. Hu, The use of hollow mesoporous silica nanospheres to encapsulate bortezomib and improve efficacy for non-small cell lung cancer therapy. Biomaterials 35, 316–326 (2014)

    Article  CAS  Google Scholar 

  25. Z. Xu, Y. Ji, M. Guan, H. Huang, C. Zhao, H. Zhang, Preparation and characterization of l-leucine-modified amphiprotic bifunctional mesoporous SBA-15 molecular sieve as a drug carrier for ribavirin. Appl. Surf. Sci. 256, 3160–3165 (2010)

    Article  CAS  Google Scholar 

  26. M. Moritz, Solvent optimization for niacinamide adsorption onorgano-functionalized SBA-15 mesoporous silica. Appl. Surf. Sci. 283, 537–545 (2013)

    Article  CAS  Google Scholar 

  27. S. Sapino, E. Ugazio, L. Gastaldi, I. Miletto, G. Berlier, D. Zonari, S. Oliaro-Bosso, Mesoporous silica as topical nanocarriers for quercetin: characterization andin vitro studies. Eur. J. Pharm. Biopharm. 89, 116–125 (2015)

    Article  CAS  Google Scholar 

  28. N. Gargiulo, A.M. Cusano, F. Causa, D. Caputo, P.A. Nett, Silver-containing mesoporous bioactive glass with improved antibacterial properties. J. Mater. Sci.: Mater.: Med. 24, 2129–2135 (2013)

    Article  CAS  Google Scholar 

  29. V. Zeleňák, V. Hornebecq, P. Llewellyn, Zinc(II)-benzoato complexes immobilised in mesoporous silica host. Microporous Mesoporous Mater. 83, 125–135 (2005)

    Article  Google Scholar 

  30. M. Moritz, M. Geszke-Moritz, Mesoporous silica materials with different structures as the carriersfor antimicrobial agent. Modelling of chlorhexidine adsorption and release. Appl. Surf. Sci. 356, 1327–1340 (2015)

    Article  CAS  Google Scholar 

  31. S. Jangra, P. Girotra, V. Chhokar, V.K. Tomer, A.K. Sharma, S. Duhan, In-vitro drug release kinetics studies of mesoporous SBA-15 azathioprine composite. J. Porous Mater. (2016). doi:10.1007/s10934-016-0123-1

    Google Scholar 

  32. D. Halamová, M. Badaničová, V. Zeleňák, Naproxen drug delivery using periodic mesoporous silica SBA-15. Appl. Surf. Sci. 256, 6489–6494 (2010)

    Article  Google Scholar 

  33. Y. Hu, J. Wang, Z. Zhi, T. Jiang, S. Wang, Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J. Colloid Interface Sci. 363, 410–417 (2011)

    Article  CAS  Google Scholar 

  34. Y. Hu, Z. Zhi, Q. Zhao, C. Wu, P. Zhao, H. Jiang, T. Jiang, S. Wang, 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous Mesoporous Mater. 147, 94–101 (2012)

    Article  Google Scholar 

  35. M.J.K. Thomas, I. Slipper, A. Walunj, A. Jain, M.E. Favretto, P. Kallinteri, D. Douroumis, Inclusion of poorly soluble drugs in highly ordered mesoporous silica nanoparticles. Int. J. Pharm. 387, 272–277 (2010)

    Article  CAS  Google Scholar 

  36. S.A. Wahajuddin, Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomed. 7, 3445–3471 (2012)

    Article  CAS  Google Scholar 

  37. P. Yang, Z. Quan, Z. Hou, Ch. Li, X. Kang, Z. Cheng, J. Lin, A magnetic, luminiscent and mesoporous core-shell structured composite material as drug carrier. Biomaterials 30, 4786–4795 (2009)

    Article  CAS  Google Scholar 

  38. S. Zhu, Z. Zhou, D. Zhang, C.H. Jin, Z. Li, Design and synthesis of delivery system based on SBA-15 with magnetic particles formed in situ and thermo-sensitive PNIPA as controlled switch. Microporous Mesoporous Mater. 106, 56–61 (2007)

    Article  CAS  Google Scholar 

  39. S. Huang, C.H. Li, Z. Cheng, Y. Fan, P. Yang, C. Zhang, J. Lin, Magnetic Fe3O4@mesoporous silica composites for drug delivery and bioadsorption. J. Colloids Interface Sci. 376, 312–321 (2012)

    Article  CAS  Google Scholar 

  40. E.R. Hernández, A.L. Noriega, D. Arcos, M.V. Regí, Mesoporous magnetic microspheres for drug targeting. Solid State Sci. 10, 421–426 (2008)

    Article  Google Scholar 

  41. K.C. Souza, J.D. Ardisson, E.M.B. Sousa, Study of mesoporous silica/magnetite systems in drug controlled release. J. Mater. Sci. Mater.: Med. 20, 507–512 (2009)

    Article  CAS  Google Scholar 

  42. A.C. Moffat, J.V. Jackson, M.S.Moss, B.Widdop, in Isolation and Identification of Drugs (London, 1986)

  43. T.W. Kim, R. Ryoo, M. Kruk, K.P. Gierszal, M. Jaroniec, S. Kamiya, O. Teresaki, Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. J. Phys. Chem. B. 108, 11480–11489 (2004)

    Article  CAS  Google Scholar 

  44. K.M.S. Khalil, H.A. Mahmoud, T.T. Ali, Direct formation of thermally stabilized amorphous mesoporous Fe2O3/SiO2 nanocomposites by hydrolysis of aqueous ion (III) nitrate in sols of spherical silica particles. Langmuir 24, 1037–1043 (2008)

    Article  CAS  Google Scholar 

  45. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998)

    Article  CAS  Google Scholar 

  46. Y. Sakamoto, M. Kaneda, O. Terasaki, D.Y. Zhao, J.M. Kim, G. Stucky, H.J. Shin, R. Ryoo, Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 408, 449–453 (2000)

    Article  CAS  Google Scholar 

  47. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas-solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  48. V. Zeleňák, A. Zeleňáková, J. Kováč, U. Vainio, N. Murafa, Influence of Surface Effects on Magnetic Behavior of Hematite Nanoparticles Embedded in Porous Silica Matrix. J. Phys. Chem. C 113, 13045–13050 (2009)

    Article  Google Scholar 

  49. S. Bedanta, W. Wolfgang Kleemann, Supermagnetism. J. Phys. D Appl. Phys. 42, 013001 (2009)

    Article  Google Scholar 

  50. M. Tadic, V. Kusigerski, D. Markovic, I. Milosevic, V. Spasojevic, High concentration of hematite nanoparticles in a silica matrix: structural and magnetic properties. J. Magn. Magn. Mater. 321, 12–16 (2009)

    Article  CAS  Google Scholar 

  51. A. Figuerola, R. Di Corato, L. Manna, T. Pellegrino, From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharm. Res. 62, 126–143 (2010)

    Article  CAS  Google Scholar 

  52. J. Salomen, L. Laitinen, A.M. Kaukonen, J. Tuura, M. Bjorkqvist, T. Heikkilä, K. Vähä-Heikkilä, J. Hirvonen, V.P. Lehto, Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J. Control Release 108, 362–374 (2005)

    Article  Google Scholar 

  53. J.M. Rosenholm, M. Lindén, Towards establishing structure—activity relationships for mesoporous silica in drug delivery applications. J. Control Release 128, 157–164 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0520. V.Z. thanks Desy, Hasylab, Hamburg Germany for the support during synchrotron related measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Zeleňák.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeleňák, V., Halamová, D., Zeleňáková, A. et al. Periodic 3D nanoporous silica modified by amine or SPION nanoparticles as NSAID delivery system. J Porous Mater 23, 1633–1645 (2016). https://doi.org/10.1007/s10934-016-0224-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0224-x

Keywords

Navigation