Skip to main content
Log in

Moving across scales: a quantitative assessment of X-ray CT to measure the porosity of rocks

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

We apply multidimensional X-ray CT to quantify the porosity of Berea Sandstone by using both medical- and synchrotron-based X-ray radiation, so as to produce images of the same sample with mm- and micron-resolution, respectively. Three different samples are used and the obtained tomograms are compared by considering the spatial distribution of porosity values for the range of voxel sizes 0.25–16 mm3. The agreement between the two independent techniques is assessed by means of the concordance correlation coefficient. Statistically significant correlations are found for each sample up to the maximum resolution of the medical CT scanner, i.e. for images with a voxel size of \((0.5 \times 0.5 \times 1\,\hbox {mm})^{3}\). The direct comparison of images obtained by medical- and synchrotron-based X-ray radiation has a dual benefit. First, it objectively informs the segmentation step required for the binarization of the high-resolution synchrotron images that is otherwise prone to operator bias; in this context, the applicability of the proposed workflow is demonstrated with two widely applied locally adaptive thresholding algorithms, namely the hysteresis and the watershed methods. Secondly, once this calibration has occurred, the coupling of the two techniques allows analyzing porosity heterogeneity across a range of length-scales that spans over more than eight orders of magnitude. We anticipate that the ability to perform a true multi-scale experiment may represent the required point of departure for developing up-scaling approaches that capture the inherently complex heterogeneity of rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Wildenschild, A.P. Sheppard, Adv. Water Res. 51, 217 (2013)

    Article  Google Scholar 

  2. F. Fusseis, X. Xiao, C. Schrank, F. De Carlo, J. Struct. Geol. 65, 1 (2014)

    Article  Google Scholar 

  3. S. Wellington, H. Vinegar, J. Pet. Technol. 39, 885 (1987)

    Article  Google Scholar 

  4. E.M. Withjack, SPE Form. Eval. 3, 696 (1988)

    Article  Google Scholar 

  5. V. Cnudde, M. Boone, Earth Sci. Rev. 123, 1 (2013)

    Article  Google Scholar 

  6. D. Silin, L. Tomutsa, S. Benson, T. Patzek, Transport Porous Media 86(2), 495 (2011)

    Article  CAS  Google Scholar 

  7. M. Andrew, B. Bijeljic, M.J. Blunt, Geophys. Res. Lett. 40(15), 3915 (2013)

    Article  CAS  Google Scholar 

  8. A.L. Herring, L. Andersson, D. Newell, J. Carey, D. Wildenschild, Int. J. Greenh. Gas Control 25, 93 (2014)

    Article  CAS  Google Scholar 

  9. S.C.M. Krevor, R. Pini, L. Zuo, S.M. Benson, Water Resour. Res. 48(2), W02532 (2012)

    Article  Google Scholar 

  10. S. Berg, S. Oedai, H. Ott, Int. J. Greenh. Gas Control 12, 478 (2013)

    Article  CAS  Google Scholar 

  11. R. Pini, S.M. Benson, Water Resour. Res. 49(6), 3516 (2013)

    Article  Google Scholar 

  12. M. Akbarabadi, M. Piri, Adv. Water Res. 52, 190 (2013)

    Article  CAS  Google Scholar 

  13. R. Pini, S.C.M. Krevor, S.M. Benson, Adv. Water Res. 38, 48 (2012)

    Article  CAS  Google Scholar 

  14. R.H. Brooks, A.T. Corey, Hydrol. Pap. 3, 1 (1964)

    Google Scholar 

  15. W. Murphy, J. Roberts, D. Yale, K. Winkler, Geophys. Res. Lett. 11(8), 697 (1984)

    Article  Google Scholar 

  16. K.A. Klise, V.C. Tidwell, S.A. McKenna, Adv. Water Res. 31(12), 1731 (2008)

    Article  CAS  Google Scholar 

  17. J.C. Perrin, S. Benson, Transport Porous Media 82(1), 93 (2010)

    Article  CAS  Google Scholar 

  18. J.Q. Shi, Z. Xue, S. Durucan, Int. J. Greenh. Gas Control 5(1), 75 (2011)

    Article  CAS  Google Scholar 

  19. B.L. Alemu, E. Aker, M. Soldal, Ø. Johnsen, P. Aagaard, Geophys. Prospect. 61(1), 235 (2013)

    Article  Google Scholar 

  20. S. Krevor, R. Pini, B. Li, S. Benson, Geophys. Res. Lett. 38, L15401 (2011)

    Article  Google Scholar 

  21. R. Pini, S.M. Benson, Geophys. Res. Lett. 40(15), 3903 (2013)

    Article  Google Scholar 

  22. T. Tran, J. Hydrol. 183(1), 37 (1996)

    Article  Google Scholar 

  23. A.D. Grader, A.B. Clark, T. Al-Dayyani, A. Nur, in Proceedings of the International Symposium of the Society of Core Analysts, Noordwijk aan Zee, The Netherlands, 27–30 September 2009

  24. R.M. Sok, T. Varslot, A. Ghous, S. Latham, A.P. Sheppard, M.A. Knackstedt, Petrophysics 51(6), 379 (2010)

    Google Scholar 

  25. P. Lai, K. Moulton, S. Krevor, Chem. Geol. 411, 260 (2015)

    Article  CAS  Google Scholar 

  26. R. Pini, Langmuir 30(37), 10984 (2014)

    Article  CAS  Google Scholar 

  27. S. Akin, A.R. Kovscek, in Applications of X-ray Computed Tomography in the Geosciences, ed. by F. Mees, R.Swennen, M. Van Geet, P. Jacobs, vol 215 (Geological Society, London, 2003), pp. 23–38

  28. H. Ott, K. de Kloe, M. van Bakel, F. Vos, A. van Pelt, P. Legerstee, A. Bauer, K. Eide, A. van der Linden, S. Berg, Rev. Sci. Instrum. 83(8), 084501 (2012)

    Article  CAS  Google Scholar 

  29. Y. Zhang, O. Nishizawa, T. Kiyama, S. Chiyonobu, Z. Xue, Geophys. J. Int. 197(3), 1789 (2014)

    Article  CAS  Google Scholar 

  30. B. Vega, A. Dutta, A.R. Kovscek, Transport Porous Media 101(1), 81 (2014)

    Article  Google Scholar 

  31. E.J. Peters, W.D. Hardham, J. Pet. Sci. Eng. 4(2), 155 (1990)

    Article  Google Scholar 

  32. S. Ganapathy, D.G. Wreath, M.T. Lim, B.A. Rouse, G.A. Pope, K. Sepehrnoori, SPE Form. Eval. 8(4), 273 (1993)

    Article  CAS  Google Scholar 

  33. M. Honarpour, A. Cullick, N. Saad, N. Humphreys, J. Pet. Technol. 47, 980 (1995)

    Article  Google Scholar 

  34. P. Iassonov, T. Gebrenegus, M. Tuller, Water Resour. Res. 45(9), 1 (2009)

    Article  Google Scholar 

  35. H. Andrä, N. Combaret, J. Dvorkin, E. Glatt, J. Han, M. Kabel, Y. Keehm, F. Krzikalla, M. Lee, C. Madonna, Comput. Geosci. 50, 25 (2013)

    Article  Google Scholar 

  36. P.C. Baveye, M. Laba, W. Otten, L. Bouckaert, P. Dello Sterpaio, R.R. Goswami, D. Grinev, A. Houston, Y. Hu, J. Liu, Geoderma 157(1), 51 (2010)

    Article  Google Scholar 

  37. L. Leu, S. Berg, F. Enzmann, R. Armstrong, M. Kersten, Transport Porous Media 105(2), 451 (2014)

    Article  CAS  Google Scholar 

  38. M.L. Porter, D. Wildenschild, Comput. Geosci. 14(1), 15 (2010)

    Article  Google Scholar 

  39. C.E. Shannon, Proc. IRE 37(1), 10 (1949)

    Article  Google Scholar 

  40. A. Buades, B. Coll, J.M. Morel, IPOL J. doi:10.5201/ipol.2011.bcm_nlm (2011)

  41. H. Vogel, A. Kretzschmar, Geoderma 73(1), 23 (1996)

    Article  Google Scholar 

  42. L. Vincent, P. Soille, I.E.E.E. Trans, Pattern Anal. Mach. Intell. 6, 583 (1991)

    Article  Google Scholar 

  43. S. Schlüter, A. Sheppard, K. Brown, D. Wildenschild, Water Resour. Res. 50(4), 3615 (2014)

    Article  Google Scholar 

  44. G. Kerckhofs, J. Schrooten, T. Van Cleynenbreugel, S.V. Lomov, M. Wevers, Rev. Sci. Instrum. 79(1), 013711 (2008)

    Article  CAS  Google Scholar 

  45. N.J. Cox, Geomorphology 76(3), 332 (2006)

    Article  Google Scholar 

  46. J.R. Taylor, An Introduction to Error Analysis, 2nd edn. (University Science Books, Mill Valley, 1997)

    Google Scholar 

  47. M. Chaouche, N. Rakotomalala, D. Salin, B. Xu, Y. Yortsos, Chem. Eng. Sci. 49(15), 2447 (1994)

    Article  CAS  Google Scholar 

  48. J. Bear, Dynamics of Fluids in Porous Media (Dover, New York, 1988)

    Google Scholar 

Download references

Acknowledgments

Dr. Claudio Madonna is grateful to Prof. Sally Benson, Department of Energy Resources Engineering, Stanford University (Stanford, CA, USA) for supporting his research visit. Special thanks go to Dr. Jonathan Ajo-Franklin and Dr. Marco Votolini, Lawrence Berkeley National Laboratory (Berkeley, CA, USA) for the acquisition and initial reconstruction of the synchrotron images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronny Pini.

Appendix: Quantification of the mCT noise

Appendix: Quantification of the mCT noise

The use of tomograms obtained with a medical CT scanner on a voxel-by-voxel basis requires a careful appraisal of the uncertainty associated with readings at such high resolutions. A practical way for achieving this is to subtract images of scans taken at identical locations (e.g. two consecutive scans of the same slice); as described in [13], the obtained differences follow a Normal distribution function that is centred around zero and that is characterised by a given standard deviation. The latter is a measure of the “CT noise”. This analysis can be readily extended by (1) subtracting images that represent an average of multiple scans of the same slice and/or by (2) subtracting images obtained at increasing voxel sizes. Both methods can in fact effectively reduce image noise. Results from such exercise are shown in Fig.  12, where the “CT noise” is plotted as a function of the number of averaged scans n (represented in terms of \(1/\sqrt{n}\) in the figure) for the three different voxel sizes considered in this study, namely \((0.5 \times 0.5 \times 1)\), \((1 \times 1 \times 1)\) and \((2 \times 2 \times 1)\,\hbox {mm}^{3}.\) Upon application of classic rules of error propagation, it can be shown that [13]:

$$\sigma _{\mathrm{\Delta }_n}=\sqrt{2}\frac{\sigma _{\mathrm {vox}}}{\sqrt{n}}$$
(4)

where \(\sigma _{\mathrm{\Delta }_n}\) (the “CT noise”) is the standard deviation that represents the distribution of CT values obtained upon subtracting two images, which have been obtained from an average n independent scans each, while \(\sigma _{\mathrm{vox}}\) is the uncertainty in CT units associated to a single voxel. In Fig. 12, the symbols are the experimentally obtained \(\sigma _{\mathrm{\Delta }_n}\) from a set of 20 consecutive scans of the same slice of the Berea Sandstone sample used in this study, while the lines represent the behaviour predicted by Eq. 4. Accordingly, \(\sigma _{\mathrm{vox}}\) takes a value of 18.4, 15.0 and 8.8 HU for a voxel of size \((0.5 \times 0.5 \times 1)\), \((1 \times 1 \times 1)\) and \((2 \times 2 \times 1)\,\hbox {mm}^{3},\) respectively. When 20 consecutive scans are taken, this uncertainty reduces to 4.1, 3.3 and 2.0 HU, respectively. In an analogous manner, it can be shown that porosity values predicted from Eq. 1 are affected by an uncertainty \(\sigma _{{\phi },n}\):

$$\sigma _{\phi _n}=\sqrt{2}\frac{\sigma _{\mathrm{vox}}}{\sqrt{n}(CT_\mathrm{w}-CT_\mathrm{a})} \approx \frac{\sigma _{\mathrm{\Delta }_n}}{1000}$$
(5)

where \(\phi _n\) represents a voxel porosity obtained upon combination of dry and wet images, which have been obtained from an average n independent scans each [13]. Accordingly, porosity uncertainties are reported on the right-hand side y-axis in Fig. 12 and the corresponding 2D porosity maps are shown in Fig. 2.

Fig. 12
figure 12

Analysis of the noise affecting tomograms acquired with a medical CT scanner at various voxel sizes, namely \((2 \times 2 \times 1)\), \((1\times 1 \times 1)\) and \((0.5 \times 0.5 \times 1)\,\hbox {mm}^{3}.\) The CT noise is defined as the standard deviation, \(\sigma _{\mathrm{\Delta }_n},\) that represents the distribution of CT values obtained upon subtracting two images, which have been obtained from an average n independent scans each. Experimentally determined values are given by the symbols, while the lines are predictions from Eqs. 4 (left-hand y-axis) and 5 (right-hand y-axis). X-ray CT images were acquired on a General Electric Hi-Speed CT/i X-ray computed tomography scanner by selecting a tube current of 200 mA and an energy level of the radiation of 120 keV

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pini, R., Madonna, C. Moving across scales: a quantitative assessment of X-ray CT to measure the porosity of rocks. J Porous Mater 23, 325–338 (2016). https://doi.org/10.1007/s10934-015-0085-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0085-8

Keywords

Navigation