Skip to main content
Log in

A new method for removing dispersed carbon nanotubes from aqueous solution by nanoporous biosilica (frustule)

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstracts

In this paper, we propose a new method for removing dispersed carbon nanotubes (CNTs) from an aqueous solution by nanoporous biosilica (frustule) as an adsorbent. UV–vis spectra clearly showed that more than 90 % of the CNTs were adsorbed onto the surface of frustule when frustule was mixed with the CNT dispersion. In particular, adsorption was more effective in an acidic solution than in a basic solution or in pure water. In addition, methylene blue (MB) was adsorbed onto the surface of the frustule in similar fashion as the CNTs. This suggests that electrostatic interaction may be an important factor in determining the adsorption capacity. The CNTs adsorbed onto the surface of the frustule were easily removed from the solution by centrifugation. On the other hand, when we employed diatomite instead of frustule, the adsorption ratio of CNTs was less than 20 % even though diatomite is widely used as an adsorbent. Our results demonstrated for the first time that using frustule as an adsorbent to removing CNTs is effective and simple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  2. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordander, D.T. Cobert, R.E. Smalley, Science 269, 1550–1553 (1995)

    Article  CAS  Google Scholar 

  3. D.A. Heller, S. Baik, T.E. Eurell, M.S. Strano, Adv. Mater. 17, 2793–2799 (2005)

    Article  CAS  Google Scholar 

  4. N.W. Kam, M. O’Connell, J.A. Wisdom, H. Dai, in Proceedings of the National Academy of Science of the USA, 102, 11600–11605 (2005)

    Google Scholar 

  5. G. Oberdorster, E. Oberdorster, J. Oberdorster, Environ. Health Perspect. 113, 823–839 (2005)

    Article  CAS  Google Scholar 

  6. J. Muller, F. Huaux, N. Moreau, Toxicol. Appl. Pharmacol. 207, 221–231 (2005)

    Article  CAS  Google Scholar 

  7. C.W. Lam, J.T. James, R. McCluskey, Crit. Rev. Toxicol. 36, 189–217 (2006)

    Article  CAS  Google Scholar 

  8. A. Nel, T. Xia, L. Madler, Science 311, 622–627 (2006)

    Article  CAS  Google Scholar 

  9. M.A.M. Khraisheh, Y.S. Al-Degs, W.A.M. Mcminn, Chem. Eng. J. 99, 177–184 (2004)

    Article  CAS  Google Scholar 

  10. E. Erdem, G. Colgecen, R. Donat, J. Colloid Interface Sci. 282, 314–319 (2005)

    Article  CAS  Google Scholar 

  11. N.L. Rosi, C.S. Thaxton, C.A. Mirkin, Angew. Chem. Int. Ed. 43, 5500–5503 (2004)

    Google Scholar 

  12. E.K. Payne, N.L. Rosi, C. Xue, Angew. Chem. Int. Ed. 44, 5064–5067 (2005)

    Google Scholar 

  13. D. Losic, J.G. Mitchell, R. Lal, N.H. Voelker, Adv. Funct. Mater. 17, 2439–2446 (2007)

    Article  CAS  Google Scholar 

  14. Z. Bao, E.M. Ernst, S. Yoo, K.H. Sandhage, Adv. Mater. 21, 474–478 (2008)

    Article  Google Scholar 

  15. T. Nagumo, H. Kobayashi, Diatom 5, 45–50 (1990)

    Google Scholar 

  16. T. Nagumo, Diatom 10, 88 (1995)

    Google Scholar 

  17. U. Kazuo, L. Xing, M. Shigeki, M. Gad, J. Nanosci. Nanotechnol. 7, 2842–2846 (2007)

    Article  Google Scholar 

  18. U. Kazuo, N. Yusuke, I. Takuya, H. Yo, K. Reiko, M. Shigeki, J. Biol. Phys. 34, 189–196 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Tatsuya Tomo, Yoshikazu Kumashiro, and Teruo Okano for providing a UV–Vis spectrophotometer and XPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morito Sakuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuma, M., Hori, S., Hayashida, T. et al. A new method for removing dispersed carbon nanotubes from aqueous solution by nanoporous biosilica (frustule). J Porous Mater 20, 961–966 (2013). https://doi.org/10.1007/s10934-013-9673-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9673-7

Keywords

Navigation