Skip to main content

Advertisement

Log in

The complex landscape of intracellular signalling in protein modification under hyperglycaemic stress leading to metabolic disorders

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract 

Hyperglycaemia is a life-threatening risk factor that occurs in both chronic and acute phases and has been linked to causing injury to many organs. Protein modification was triggered by hyperglycaemic stress, which resulted in pathogenic alterations such as impaired cellular function and tissue damage. Dysregulation in cellular function increases the condition associated with metabolic disorders, including cardiovascular diseases, nephropathy, retinopathy, and neuropathy. Hyperglycaemic stress also increases the proliferation of cancer cells. The major areas of experimental biomedical research have focused on the underlying mechanisms involved in the cellular signalling systems involved in diabetes-associated chronic hyperglycaemia. Reactive oxygen species and oxidative stress generated by hyperglycaemia modify many intracellular signalling pathways that result in insulin resistance and β-cell function degradation. The dysregulation of post translational modification in β cells is clinically associated with the development of diabetes mellitus and its associated diseases. This review will discuss the effect of hyperglycaemic stress on protein modification and the cellular signalling involved in it. The focus will be on the significant molecular changes associated with severe metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No data were used in this review article.

References

  1. Kumar P, Swain MM, Pal A (2016) Hyperglycemia-induced inflammation caused down-regulation of 8-oxoG-DNA glycosylase levels in murine macrophages is mediated by oxidative-nitrosative stress-dependent pathways. Int J Biochem Cell Biol 73:82–98

    Article  CAS  PubMed  Google Scholar 

  2. Dungan KM, Braithwaite SS, Preiser JC (2009) Stress hyperglycaemia. The Lancet 373(9677):1798–1807

    Article  CAS  Google Scholar 

  3. Marik PE (2019) Endocrinology of the stress response during critical illness. Crit Care Nephrol 446–454

  4. Zheng H, Wu J, Jin Z, Yan LJ (2016) Protein modifications as manifestations of hyperglycemic glucotoxicity in diabetes and its complications. Biochem Insights 9:BCI-S36141

    Article  Google Scholar 

  5. Parrinello CM, Lutsey PL, Couper D, Eckfeldt JH, Steffes MW, Coresh J, Selvin E (2015) Total short-term variability in biomarkers of hyperglycemia in older adults. Clin Chem 61(12):1540–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Juraschek SP, Steffes MW, Miller ER III, Selvin E (2012) Alternative markers of hyperglycemia and risk of diabetes. Diabetes Care 35(11):2265–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ighodaro OM (2018) Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 108:656–662

    Article  CAS  PubMed  Google Scholar 

  8. Callahan LA, Supinski GS (2014) Hyperglycemia-induced diaphragm weakness is mediated by oxidative stress. Crit Care 18(3):1–17

    Article  Google Scholar 

  9. Osawa T, Kato Y (2005) Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann N Y Acad Sci 1043(1):440–451

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Aronson D, Rayfield EJ (2002) How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol 1(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  11. West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17(3):171–180

    Article  CAS  PubMed  Google Scholar 

  12. Cao Y, Yang Z, Chen Y, Jiang S, Wu Z, Ding B, Yang Y, Jin Z, Tang H (2021) An overview of the posttranslational modifications and related molecular mechanisms in diabetic nephropathy. Front Cell Dev Biol 9:630401

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci 97(22):12222–12226

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kajbaf F, Mojtahedzadeh M, Abdollahi M (2007) Mechanisms underlying stress-induced hyperglycemia in critically ill patients. Clin Pract 4(1):97

    CAS  Google Scholar 

  15. Xiu F, Stanojcic M, Diao L, Jeschke MG (2014) Stress hyperglycemia, insulin treatment, and innate immune cells. Int J Endocrinol 2014:486403

  16. Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014:137919

  17. Porte D Jr, Kahn SE (1991) Mechanisms for hyperglycemia in type II diabetes mellitus: therapeutic implications for sulfonylurea treatment—an update. Am J Med 90(6):S8–S14

    Article  Google Scholar 

  18. Mirzaei F, Khodadadi I, Vafaei SA, Abbasi-Oshaghi E, Tayebinia H, Farahani F (2021) Importance of hyperglycemia in COVID-19 intensive-care patients: Mechanism and treatment strategy. Prim Care Diabetes 15(3):409–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hammes HP (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 61(1):29–38

    Article  PubMed  Google Scholar 

  20. Brown M, Tache Y, Fisher D (1979) Central nervous system action of bombesin: mechanism to induce hyperglycemia. Endocrinology 105(3):660–665

    Article  CAS  PubMed  Google Scholar 

  21. Palumbo F, Bianchi C, Miccoli R, Del Prato S (2003) Hyperglycaemia and cardiovascular risk. Acta Diabetol 40(2):s362–s369

    Article  PubMed  Google Scholar 

  22. Safi SZ, Qvist R, Yan GOS, Ismail ISB (2014) Differential expression and role of hyperglycemia induced oxidative stress in epigenetic regulation of β1, β2 and β3-adrenergic receptors in retinal endothelial cells. BMC Med Genomics 7(1):1–13

    Article  Google Scholar 

  23. Hecker M, Wagner AH (2018) Role of protein carbonylation in diabetes. J Inherit Metab Dis 41(1):29–38

    Article  CAS  PubMed  Google Scholar 

  24. Wadham C, Parker A, Wang L, Xia P (2007) High glucose attenuates protein S-nitrosylation in endothelial cells: role of oxidative stress. Diabetes 56(11):2715–2721

    Article  CAS  PubMed  Google Scholar 

  25. Kim HJ, Lee W, Yun JM (2014) Luteolin inhibits hyperglycemia-induced proinflammatory cytokine production and its epigenetic mechanism in human monocytes. Phytother Res 28(9):1383–1391

    Article  CAS  PubMed  Google Scholar 

  26. Dehnavi S, Sadeghi M, Penson PE, Banach M, Jamialahmadi T, Sahebkar A (2019) The role of protein SUMOylation in the pathogenesis of atherosclerosis. J Clin Med 8(11):1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Latha RCR (2014) Therapeutic potential of active principles isolated from fruits of Terminalia bellerica Roxb. in streptozotocin-induced diabetic Wistar rats

  28. Deedwania P, Kosiborod M, Barrett E, Ceriello A, Isley W, Mazzone T, Raskin P (2008) Hyperglycemia and acute coronary syndrome: a scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 117(12):1610–1619

    Article  PubMed  Google Scholar 

  29. Lee PG, Halter JB (2017) The pathophysiology of hyperglycemia in older adults: clinical considerations. Diabetes Care 40(4):444–452

    Article  PubMed  Google Scholar 

  30. Ryu TY, Park J, Scherer PE (2014) Hyperglycemia as a risk factor for cancer progression. Diabetes Metab J 38(5):330–336

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang C (2013) The relationship between type 2 diabetes mellitus and related thyroid diseases. J Diabetes Res 2013:390534

  32. Shah NH, Velez V, Casanova T, Koch S (2014) Hyperglycemia presenting as left middle cerebral artery stroke: a case report. J Vasc Interv Neurol 7(4):9

    PubMed  PubMed Central  Google Scholar 

  33. Leal JM, de Souza GH, Marsillac PFD, Gripp AC (2022) Skin manifestations associated with systemic diseases–Part II. An Bras Dermatol 96:672–687

    Article  Google Scholar 

  34. Villeneuve LM, Reddy MA, Natarajan R (2011) Epigenetics: deciphering its role in diabetes and its chronic complications. Clin Exp Pharmacol Physiol 38(7):451–459

    Article  PubMed  Google Scholar 

  35. Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67(1):3–21

    Article  CAS  PubMed  Google Scholar 

  36. Chitwood DG, Wang Q, Elliott K, Bullock A, Jordana D, Li Z, Wu C, Harcum SW, Saski CA (2021) Characterization of metabolic responses, genetic variations, and microsatellite instability in ammonia-stressed CHO cells grown in fed-batch cultures. BMC Biotechnol 21(1):1–16

    Article  Google Scholar 

  37. Ramteke P, Deb A, Shepal V, Bhat MK (2019) Hyperglycemia associated metabolic and molecular alterations in cancer risk, progression, treatment, and mortality. Cancers 11(9):1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Srivastava SP, Goodwin JE (2020) Cancer biology and prevention in diabetes. Cells 9(6):1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz-Flores S, Dent S, Kondapalli L, Ky B, Okwuosa T, Piña IL (2018) Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation 137(8):e30–e66

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pannala R, Basu A, Petersen GM, Chari ST (2009) New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol 10(1):88–95

    Article  PubMed  PubMed Central  Google Scholar 

  41. American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Supplement_1):S81–S90

    Article  Google Scholar 

  42. Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol 4:37

    Article  Google Scholar 

  43. Quan W, Jo EK, Lee MS (2013) Role of pancreatic β-cell death and inflammation in diabetes. Diabetes Obes Metab 15(s3):141–151

    Article  CAS  PubMed  Google Scholar 

  44. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jayaraman A, Pike CJ (2014) Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Curr Diab Rep 14(4):1–9

    Article  CAS  Google Scholar 

  46. Moran C, Beare R, Phan TG, Bruce DG, Callisaya ML, Srikanth V (2015) Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology 85(13):1123–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roberts RO, Knopman DS, Przybelski SA, Mielke MM, Kantarci K, Preboske GM, Senjem ML, Pankratz VS, Geda YE, Boeve BF, Ivnik RJ (2014) Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology 82(13):1132–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Srodulski S, Sharma S, Bachstetter AB, Brelsfoard JM, Pascual C, Xie XS, Saatman KE, Van Eldik LJ, Despa F (2014) Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol Neurodegener 9(1):1–12

    Article  Google Scholar 

  49. Sivitz WI, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12(4):537–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rochette L, Zeller M, Cottin Y, Vergely C (2014) Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta (BBA)-Gen Subj 1840(9):2709–2729

    Article  CAS  Google Scholar 

  51. Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, Craft S, Gandy S, Buettner C, Stoeckel LE, Holtzman DM (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14(3):168–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bharadwaj P, Wijesekara N, Liyanapathirana M, Newsholme P, Ittner L, Fraser P, Verdile G (2017) The link between type 2 diabetes and neurodegeneration: roles for amyloid-β, amylin, and tau proteins. J Alzheimers Dis 59(2):421–432

    Article  CAS  PubMed  Google Scholar 

  53. Yang Y, Ma D, Wang Y, Jiang T, Hu S, Zhang M, Yu X, Gong CX (2013) Intranasal insulin ameliorates tau hyperphosphorylation in a rat model of type 2 diabetes. J Alzheimers Dis 33(2):329–338

    Article  CAS  PubMed  Google Scholar 

  54. Verdile G, Fuller SJ, Martins RN (2015) The role of type 2 diabetes in neurodegeneration. Neurobiol Dis 84:22–38

    Article  CAS  PubMed  Google Scholar 

  55. Akhan T, Hassan I, Ahmad A, Perveen A, Aman S, Quddusi S, M Alhazza I, M Ashraf G, Aliev G (2016) Recent updates on the dynamic association between oxidative stress and neurodegenerative disorders. CNS Neurol Disord-Drug Targets (Formerly Curr Drug Targets-CNS & Neurol Disord) 15(3):310–320

    Google Scholar 

  56. Saeed K, Shah SA, Ullah R, Alam SI, Park JS, Saleem S, Jo MH, Kim MW, Hahm JR, Kim MO (2020) Quinovic acid impedes cholesterol dyshomeostasis, oxidative stress, and neurodegeneration in an amyloid-β-induced mouse model. Oxidative Med Cell Longev 2020:9523758

  57. Völgyi K, Háden K, Kis V, Gulyássy P, Badics K, Györffy BA, Simor A, Szabó Z, Janáky T, Drahos L, Dobolyi Á (2017) Mitochondrial proteome changes correlating with β-amyloid accumulation. Mol Neurobiol 54(3):2060–2078

    Article  PubMed  Google Scholar 

  58. Kuga GK, Botezelli JD, Gaspar RC, Gomes RJ, Pauli JR, Leme JACDA (2017) Hippocampal insulin signaling and neuroprotection mediated by physical exercise in Alzheimer´ s Disease. Motriz: Revista de Educação Física 23:e101608

  59. Bhupathiraju SN, Hu FB (2016) Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res 118(11):1723–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jean-Louis G, Zizi F, Clark LT, Brown CD, McFarlane SI (2008) Obstructive sleep apnea and cardiovascular disease: role of the metabolic syndrome and its components. J Clin Sleep Med 4(3):261–272

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sousa AG, Selvatici L, Krieger JE, Pereira AC (2011) Association between genetics of diabetes, coronary artery disease, and macrovascular complications: exploring a common ground hypothesis. Rev Diabet Stud: RDS 8(2):230

    Article  PubMed  PubMed Central  Google Scholar 

  62. Carty CL, Bůžková P, Fornage M, Franceschini N, Cole S, Heiss G, Hindorff LA, Howard BV, Mann S, Martin LW, Zhang Y (2012) Associations between incident ischemic stroke events and stroke and cardiovascular disease-related genome-wide association studies single nucleotide polymorphisms in the Population Architecture Using Genomics and Epidemiology study. Circ: Cardiovasc Genet 5(2):210–216

    PubMed  Google Scholar 

  63. Coppelli A, Giannarelli R, Aragona M, Penno G, Falcone M, Tiseo G, Ghiadoni L, Barbieri G, Monzani F, Virdis A, Menichetti F, Del Prato S (2020) Hyperglycemia at hospital admission is associated with severity of the prognosis in patients hospitalized for COVID-19: the Pisa COVID-19 study. Diabetes Care 43(10):2345–2348

  64. Wu J, Huang J, Zhu G, Wang Q, Lv Q, Huang Y, Yu Y, Si X, Yi H, Wang C, Xiao H (2020) Elevation of blood glucose level predicts worse outcomes in hospitalized patients with COVID-19: a retrospective cohort study. BMJ Open Diabetes Res Care 8(1):e001476

  65. Sardu C, D’Onofrio N, Balestrieri ML, Barbieri M, Rizzo MR, Messina V, Maggi P, Coppola N, Paolisso G, Marfella R (2020) Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control?. Diabetes Care 43(7):1408–1415

  66. Gianchandani R, Esfandiari NH, Ang L, Iyengar J, Knotts S, Choksi P, Pop-Busui R (2020) Managing hyperglycemia in the COVID-19 inflammatory storm. Diabetes 69(10):2048–2053

    Article  CAS  PubMed  Google Scholar 

  67. Zahedi M, Kordrostami S, Kalantarhormozi M, Bagheri M (2023) A Review of Hyperglycemia in COVID-19. Cureus 15:e37487

  68. Geetha HS, Singh G, Sekar A, Gogtay M, Singh Y, Abraham GM, Trivedi N (2023) Hyperglycemia in COVID-19 infection without diabetes mellitus: Association with inflammatory markers. World J Clin Cases 11(6):1287

    Article  PubMed  PubMed Central  Google Scholar 

  69. Barreto EA, Cruz AS, Veras FP, Martins R, Bernardelli RS, Paiva IM., ... Leiria LO (2023) COVID-19-related hyperglycemia is associated with infection of hepatocytes and stimulation of gluconeogenesis. Proc Natl Acad Sci 120(21):e221711912

  70. Hassan A, Kandel RS, Mishra R, Gautam J, Alaref A, Jahan N (2020) Diabetes mellitus and Parkinson’s disease: shared pathophysiological links and possible therapeutic implications. Cureus 12:e9853

  71. Gurreri A, Pazzaglia A (2020) Diabetic macular edema: state of art and intraocular pharmacological approaches. Diabetes Res Clin Pract pp. 375–389

  72. Liu X, Gong Q, Yang L, Liu M, Niu L, Wang L (2020) microRNA-199a-5p regulates epithelial-to-mesenchymal transition in diabetic cataract by targeting SP1 gene. Mol Med 26(1):1–10

    Article  Google Scholar 

  73. Zang L, Zhang D, Yao Y, Wang Y (2021) Symptomatic intracranial hemorrhage in patients with admission hyperglycemia and diabetes after mechanical thrombectomy: A systematic review and meta-analysis. Am J Emerg Med 45:23–28

    Article  PubMed  Google Scholar 

  74. Jain A, Sankhe S (2020) Hyperglycemia-induced seizures and blindness. Indian J Radiol Imaging 30(02):245–247

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gupta G, Wadhwa R, Pandey P, Singh SK, Gulati M, Sajita S, Mehta M, Singh AK, Dureja H, Collet T, Pabreja K (2020) Obesity and diabetes: pathophysiology of obesity-induced hyperglycemia and insulin resistance. Pathophysiology of obesity-induced health complications. Springer, Cham, pp 81–97

    Chapter  Google Scholar 

  76. Taimour S, Gottsäter A, Jujic A, Nilsson PM (2021) Hyperglycemia and arterial stiffness across two generations. J Hypertens 39(3):471–475

    Article  CAS  PubMed  Google Scholar 

  77. Wang N, Xu P, Wu R, Wang X, Wang Y, Shou D, Zhang Y (2021) Timosaponin BII improved osteoporosis caused by hyperglycemia through promoting autophagy of osteoblasts via suppressing the mTOR/NFκB signaling pathway. Free Radical Biol Med 171:112–123

    Article  CAS  Google Scholar 

  78. Chen C, Zhang B, Xue J, Li Z, Dou S, Chen H, Wang Q, Qu M, Wang H, Zhang Y, Wan L (2022) Pathogenic Role of Endoplasmic Reticulum Stress in Diabetic Corneal Endothelial Dysfunction. Invest Ophthalmol Vis Sci 63(3):4–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gayathiri R (2020) A Study on Diabetes Mellitus as a Risk Factor for Primary Open Angle Glaucoma (Doctoral dissertation, Thanjavur Medical College, Thanjavur)

  80. Casadei G, Filippini M, Brognara L (2021) Glycated hemoglobin (HbA1c) as a biomarker for diabetic foot peripheral neuropathy. Diseases 9(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Luo P, He WX, Li C, Chang MJ (2021) Enteric glial cells exert neuroprotection from hyperglycemia-induced damage via Akt/GSK3β pathway. NeuroReport 32(10):875–881

    Article  CAS  PubMed  Google Scholar 

  82. Upadhyay J, Trivedi N, Lal A (2020) Risk of future type 2 diabetes mellitus in patients developing steroid-induced hyperglycemia during hospitalization for chronic obstructive pulmonary disease exacerbation. Lung 198(3):525–533

    Article  CAS  PubMed  Google Scholar 

  83. Zheng W, Guo J, Liu ZS (2021) Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective. Clin Epigenetics 13(1):1–16

    Article  CAS  Google Scholar 

  84. Khan QA, Batool A, Haider MA, Hanif M, Khan AW (2020) A rare case of Hemichorea-Hemiballismus due to chronic uncontrolled hyperglycemia. Cureus 12(10):e10861

  85. Svoboda SA, Shields BE (2021) Cutaneous manifestations of nutritional excess: Pathophysiologic effects of hyperglycemia and hyperinsulinemia on the skin. Cutis 107(2):74–78

    Article  PubMed  Google Scholar 

  86. Georgakis MK, Harshfield EL, Malik R, Franceschini N, Langenberg C, Wareham NJ, Markus HS, Dichgans M (2021) Diabetes mellitus, glycemic traits, and cerebrovascular disease: a Mendelian randomization study. Neurology 96(13):e1732–e1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Du Y, Bai L, Fan B, Ding H, Ding H, Hou L, Ma H, Xing N, Wang F (2022) Effect of SGLT2 inhibitors versus DPP4 inhibitors or GLP-1 agonists on diabetic foot-related extremity amputation in patients with T2DM: A meta-analysis. Prim Care Diabetes 16(1):156–161

    Article  CAS  PubMed  Google Scholar 

  88. Kronfli A, Boukerche F, Medina D, Geertsen A, Patel A, Ramedani S, Lehman E, Aziz F (2021) Immediate postoperative hyperglycemia after peripheral arterial bypass is associated with short-term and long-term poor outcomes. J Vasc Surg 73(4):1350–1360

    Article  PubMed  Google Scholar 

  89. Toki T, Shimizu-Motohashi Y, Komaki H, Takeshita E, Ishiyama A, Saito T, Mori-Yoshimura M, Sumitomo N, Hirasawa-Inoue A, Nakagawa E, Nishino I (2021) Hyperglycemic crisis in patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Pediatr Neurol 114:1–4

    Article  PubMed  Google Scholar 

  90. Sai Laxmi M, Prabhakar O (2021) Inflammatory biomarkers as a part of diagnosis in diabetic peripheral neuropathy. J Diabetes Metab Disord 20(1):869

    Article  Google Scholar 

  91. Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB (2021) The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. Int J Mol Sci 22(10):5094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim YE, Lee M, Lee YH, Kang ES, Cha BS, Lee BW (2021) Proteinuria as a significant predictive factor for the progression of carotid artery atherosclerosis in non-albuminuric type 2 diabetes. Diabetes Res Clin Pract 181:109082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Hamda Khan is highly thankful to the DS Kothari Fellowship (DSK-PDF) Award No. F.4-2/2006 (BSR)/BL/20-21/0373 for providing fellowship as Post Doctoral Fellow.

Funding

The authors are thankful to the UGC-DS Kothari Fellowship (DSKPDF) scheme (No.F.4–2/2006 (BSR)/BL/20–21/0373), New Delhi for providing financial assistance to Dr. Hamda Khan in the form post doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H. Khan and A. Khanam contributed in writing. A. A. Khan, R. Ahmad, and A. Husain done editing. S. Habib, S. Ahmad, and Moinuddin organized the structure of review.

Corresponding author

Correspondence to Hamda Khan.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Khanam, A., Khan, A.A. et al. The complex landscape of intracellular signalling in protein modification under hyperglycaemic stress leading to metabolic disorders. Protein J (2024). https://doi.org/10.1007/s10930-024-10191-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-024-10191-3

Keywords

Navigation