Skip to main content
Log in

Engineering Human Pancreatic RNase 1 as an Immunotherapeutic Agent for Cancer Therapy Through Computational and Experimental Studies

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Most plant and bacterial toxins are highly immunogenic with non-specific toxic effects. Human ribonucleases are thought to provide a promising basis for reducing the toxic agent’s immunogenic properties, which are candidates for cancer therapy. In the cell, the ribonuclease inhibitor (RI) protein binds to the ribonuclease enzyme and forms a tight complex. This study aimed to engineer and provide a gene construct encoding an improved version of Human Pancreatic RNase 1 (HP-RNase 1) to reduce connection to RI and modulate the immunogenic effects of immunotoxins. To further characterize the interaction complex of HP-RNase 1 and RI, we established various in silico and in vitro approaches. These methods allowed us to specifically monitor interactions within native and engineered HP-RNase 1/RI complexes. In silico research involved molecular dynamics (MD) simulations of native and mutant HP-RNase 1 in their free form and when bound to RI. For HP-RNase 1 engineering, we designed five mutations (K8A/N72A/N89A/R92D/E112/A) based on literature studies, as this combination proved effective for the intended investigation. Then, the cDNA encoding HP-RNase 1 was generated by RT-PCR from blood and cloned into the pSYN2 expression vector. Consequently, wild-type and the engineered HP-RNase 1 were over-expressed in E. coli TG1 and purified using an IMAC column directed against a poly-his tag. The protein products were detected by SDS–PAGE and Western blot analysis. HP-RNase 1 catalytic activity, in the presence of various concentrations of RI, demonstrated that the mutated version of the protein is able to escape the ribonuclease inhibitor and target the RNA substrate 2.5 folds more than that of the wild type. From these data, we tend to suggest the engineered recombinant HP-RNase 1 potentially as a new immunotherapeutic agent for application in human cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marshall GR, Feng JA, Kuster DJ (2008) Back to the future: ribonuclease A. Pept Sci 90:259–277

    Article  CAS  Google Scholar 

  2. Moore S, Stein WH (1973) Chemical structures of pancreatic ribonuclease and deoxyribonuclease. Science 180:458–464. https://doi.org/10.1126/science.180.4085.458

    Article  CAS  PubMed  Google Scholar 

  3. Beintema JJ, Wietzes P, Weickmann JL, Glitz DG (1984) The amino acid sequence of human pancreatic ribonuclease. Anal Biochem 136:48–64. https://doi.org/10.1016/0003-2697(84)90306-3

    Article  CAS  PubMed  Google Scholar 

  4. Cuchillo CM, Nogués MV, Raines RT (2011) Bovine pancreatic ribonuclease: fifty years of the first enzymatic reaction mechanism. Biochemistry 50:7835–7841. https://doi.org/10.1021/bi201075b

    Article  CAS  PubMed  Google Scholar 

  5. Ross CA, Mathias AP, Rabin BR (1962) The active site and mechanism of action of bovine pancreatic ribonuclease. 6. Kinetic and spectrophotometric investigation of the interaction of the enzyme with inhibitors and p-nitrophenyl acetate. Biochem J 85:145–151. https://doi.org/10.1042/bj0850145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nogués MV, Vilanova M, Cuchillo CM (1995) Bovine pancreatic ribonuclease A as a model of an enzyme with multiple substrate binding sites. Biochim Biophys Acta Protein Struct Mol Enzymol 1253:16–24. https://doi.org/10.1016/0167-4838(95)00138-K

    Article  Google Scholar 

  7. Merlino A, Avella G, Di Gaetano S et al (2009) Structural features for the mechanism of antitumor action of a dimeric human pancreatic ribonuclease variant. Protein Sci 18:50–57. https://doi.org/10.1002/pro.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dickson KA, Haigis MC, Raines RT (2005) Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 80:349–374. https://doi.org/10.1016/S0079-6603(05)80009-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee FS, Vallee BL (1993) Structure and action of mammalian ribonuclease (angiogenin) inhibitor. In: Cohn WE, Moldave KBTP (eds) Progress in nucleic acid research and molecular biology. Academic Press, Cambridge, pp 1–30

    Google Scholar 

  10. Canals A, Ribó M, Benito A et al (1999) Production of engineered human pancreatic ribonucleases, solving expression and purification problems, and enhancing thermostability. Protein Expr Purif 17:169–181

    Article  CAS  PubMed  Google Scholar 

  11. Studer RA, Dessailly BH, Orengo CA (2013) Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochem J 449:581–594

    Article  CAS  PubMed  Google Scholar 

  12. Schirrmann T, Krauss J, Arndt MAE et al (2009) Targeted therapeutic rnases (immunornases). Expert Opin Biol Ther 9:79–95

    Article  CAS  PubMed  Google Scholar 

  13. Zewe M, Rybak SM, Dübel S et al (1997) Cloning and cytotoxicity of a human pancreatic RNase immunofusion. Immunotechnology 3:127–136

    Article  CAS  PubMed  Google Scholar 

  14. Mahmuda A, Bande F, Al-Zihiry KJK et al (2017) Monoclonal antibodies: a review of therapeutic applications and future prospects. Trop J Pharm Res 16:713–722

    Article  CAS  Google Scholar 

  15. Simon N, FitzGerald D (2016) Immunotoxin therapies for the treatment of epidermal growth factor receptor-dependent cancers. Toxins (Basel) 8:137

    Article  PubMed  Google Scholar 

  16. Kim JS, Jun SY, Kim YS (2020) Critical issues in the development of immunotoxins for anticancer therapy. J Pharm Sci 109:104–115. https://doi.org/10.1016/j.xphs.2019.10.037

    Article  CAS  PubMed  Google Scholar 

  17. Chao T-Y, Raines RT (2011) Mechanism of ribonuclease A endocytosis: analogies to cell-penetrating peptides. Biochemistry 50:8374–8382

    Article  CAS  PubMed  Google Scholar 

  18. Riccio G, D’Avino C, Raines RT, De Lorenzo C (2013) A novel fully human antitumor ImmunoRNase resistant to the RNase inhibitor. Protein Eng Des Sel 26:243–248

    Article  CAS  PubMed  Google Scholar 

  19. Tripathy DR, Dinda AK, Dasgupta S (2013) A simple assay for the ribonuclease activity of ribonucleases in the presence of ethidium bromide. Anal Biochem 437:126–129

    Article  CAS  PubMed  Google Scholar 

  20. Saxena SK, Rybak SM, Winkler G et al (1991) Comparison of RNases and toxins upon injection into Xenopus oocytes. J Biol Chem 266:21208–21214

    Article  CAS  PubMed  Google Scholar 

  21. Gagné D, Doucet N (2015) Sequence-specific backbone (1)H, (13)C, and (15)N resonance assignments of human ribonuclease 4. Biomol NMR Assign 9:181–185. https://doi.org/10.1007/s12104-014-9570-2

    Article  CAS  PubMed  Google Scholar 

  22. De LC, Arciello A, Cozzolino R et al (2004) A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res 64:4870–4874

    Article  Google Scholar 

  23. De Lorenzo C, Nigro A, Piccoli R, D’Alessio G (2002) A new RNase-based immunoconjugate selectively cytotoxic for ErbB2-overexpressing cells. FEBS Lett 516:208–212

    Article  PubMed  Google Scholar 

  24. Leich F, Stöhr N, Rietz A et al (2007) Endocytotic internalization as a crucial factor for the cytotoxicity of ribonucleases. J Biol Chem 282:27640–27646

    Article  CAS  PubMed  Google Scholar 

  25. Turcotte RF, Lavis LD, Raines RT (2009) Onconase cytotoxicity relies on the distribution of its positive charge. FEBS J 276:3846–3857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matousek J, Soucek J, Slavık T et al (2003) Comprehensive comparison of the cytotoxic activities of onconase and bovine seminal ribonuclease. Comp Biochem Physiol C Toxicol Pharmacol 136:343–356

    Article  PubMed  Google Scholar 

  27. Rutkoski TJ, Kurten EL, Mitchell JC, Raines RT (2005) Disruption of shape-complementarity markers to create cytotoxic variants of ribonuclease A. J Mol Biol 354:41–54

    Article  CAS  PubMed  Google Scholar 

  28. Menzel C, Schirrmann T, Konthur Z et al (2008) Human antibody RNase fusion protein targeting CD30+ lymphomas. Blood J Am Soc Hematol 111:3830–3837

    CAS  Google Scholar 

  29. Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129

    Article  CAS  PubMed  Google Scholar 

  30. Psarras K, Ueda M, Yamamura T et al (1998) Human pancreatic RNase1-human epidermal growth factor fusion: an entirely human “immunotoxin analog” with cytotoxic properties against squamous cell carcinomas. Protein Eng 11:1285–1292. https://doi.org/10.1093/protein/11.12.1285

    Article  CAS  PubMed  Google Scholar 

  31. Leland PA, Schultz LW, Kim B-M, Raines RT (1998) Ribonuclease A variants with potent cytotoxic activity. Proc Natl Acad Sci 95:10407–10412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaur D, Swaminathan S, Batra JK (2001) Interaction of human pancreatic ribonuclease with human ribonuclease inhibitor: generation of inhibitor-resistant cytotoxic variants. J Biol Chem 276:24978–24984

    Article  CAS  PubMed  Google Scholar 

  33. Johnson RJ, McCoy JG, Bingman CA et al (2007) Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J Mol Biol 368:434–449. https://doi.org/10.1016/j.jmb.2007.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nassiri M, Gopalan V, Vakili-Azghandi M (2022) Modifications of ribonucleases in order to enhance cytotoxicity in anticancer therapy. Curr Cancer Drug Targets 22:373–387

    Article  CAS  PubMed  Google Scholar 

  35. Ariannejhad H, Nassiry MR, Javadmanesh A et al (2020) Designing of protein structural of Ranpirnase based on bovine pancreatic ribonuclease with using molecular dynamic and static simulation. Iran J Anim Sci Res 12:351–360

    Google Scholar 

  36. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  37. Kozakov D, Hall DR, Xia B et al (2017) The ClusPro web server for protein–protein docking. Nat Protoc 12:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shangary S, Wang S (2009) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49:223–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Massova I, Kollman PA (1999) Computational alanine scanning to probe protein−protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121:8133–8143. https://doi.org/10.1021/ja990935j

    Article  CAS  Google Scholar 

  40. Elcock AH, Sept D, McCammon JA (2001) Computer simulation of protein−protein interactions. J Phys Chem B 105:1504–1518. https://doi.org/10.1021/jp003602d

    Article  CAS  Google Scholar 

  41. Srinivasan J, Cheatham TE, Cieplak P et al (1998) Continuum solvent studies of the stability of DNA, RNA and phosphoramidate−DNA Helices. J Am Chem Soc 120:9401–9409. https://doi.org/10.1021/ja981844+

    Article  CAS  Google Scholar 

  42. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897. https://doi.org/10.1021/ar000033j

    Article  CAS  PubMed  Google Scholar 

  43. Naqvi AAT, Mohammad T, Hasan GM, Hassan MI (2018) Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr Top Med Chem 18:1755–1768. https://doi.org/10.2174/1568026618666181025114157

    Article  CAS  PubMed  Google Scholar 

  44. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  45. Wrapp D, Wang N, Corbett KS et al (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263. https://doi.org/10.1126/science.abb2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ali A (1995) Comparative protein modeling by satisfaction of spatial restraints. Mol Med Today 1:270–277. https://doi.org/10.1016/S1357-4310(95)91170-7

    Article  Google Scholar 

  47. Leland PA, Raines RT (2001) Cancer chemotherapy–ribonucleases to the rescue. Chem Biol 8:405–413. https://doi.org/10.1016/s1074-5521(01)00030-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Raines Ronald T, Madison WIUPJGN, Madison WIUJJR, Middleton WIUMJG, Madison WIU (2011) Cytotoxic ribonuclease variants

  49. Hornak V, Abel R, Okur A et al (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725. https://doi.org/10.1002/prot.21123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gharouni M, Mosaddeghi H, Mehrzad J et al (2021) Detecting a novel motif of O6-methyl guanine DNA methyltransferase, a DNA repair enzyme, involved in interaction with proliferating cell nuclear antigen through a computer modeling approach. Comput Theor Chem 1206:113471

    Article  CAS  Google Scholar 

  52. Baker NA, Sept D, Joseph S et al (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041. https://doi.org/10.1073/pnas.181342398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  54. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  55. Goldring JPD (2012) Protein quantification methods to determine protein concentration prior to electrophoresis. Methods Mol Biol 869:29–35. https://doi.org/10.1007/978-1-61779-821-4_3

    Article  CAS  PubMed  Google Scholar 

  56. Xue LC, Jordan RA, El-Manzalawy Y, et al (2011) Ranking docked models of protein-protein complexes using predicted partner-specific protein-protein interfaces: a preliminary study. In: Proceedings of the 2nd ACM conference on bioinformatics, computational biology and biomedicine. pp 441–445

  57. Moritsugu K, Koike R, Yamada K et al (2015) Motion tree delineates hierarchical structure of protein dynamics observed in molecular dynamics simulation. PLoS ONE 10:e0131583

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hass MAS, Liu W-M, Agafonov RV et al (2015) A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy. J Biomol NMR 61:123–136. https://doi.org/10.1007/s10858-014-9894-3

    Article  CAS  PubMed  Google Scholar 

  59. Nemaysh V, Luthra PM (2017) Computational analysis revealing that K634 and T681 mutations modulate the 3D-structure of PDGFR-β and lead to sunitinib resistance. RSC Adv 7:37612–37626

    Article  CAS  Google Scholar 

  60. Rose GD, Fleming PJ, Banavar JR, Maritan A (2006) A backbone-based theory of protein folding. Proc Natl Acad Sci 103:16623–16633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barnes CO, Jette CA, Abernathy ME et al (2020) SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588:682–687. https://doi.org/10.1038/s41586-020-2852-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee JE, Raines RT (2005) Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer. Biochemistry 44:15760–15767

    Article  CAS  PubMed  Google Scholar 

  63. Ribó M, Beintema JJ, Osset M et al (1994) Heterogeneity in the glycosylation pattern of human pancreatic ribonuclease. Biol Chem Hoppe Seyler 375:357–363

    PubMed  Google Scholar 

  64. Bosch M, Benito A, Ribó M et al (2004) A nuclear localization sequence endows human pancreatic ribonuclease with cytotoxic activity. Biochemistry 43:2167–2177

    Article  CAS  PubMed  Google Scholar 

  65. Ardelt W, Shogen K, Darzynkiewicz Z (2008) Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr Pharm Biotechnol 9:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rybak SM (2008) Antibody-onconase conjugates: cytotoxicity and intracellular routing. Curr Pharm Biotechnol 9:226–230

    Article  CAS  PubMed  Google Scholar 

  67. Lee I, Lee YH, Mikulski SM et al (2000) Tumoricidal effects of onconase on various tumors. J Surg Oncol 73:164–171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend special thanks to Dr. Matthew Robinson, Roland Dunbrack and Jimson D'Souza for critical discussions and nice suggestions.

Funding

This work was supported by a grant of the agricultural faculty of Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Contributions

Shahrokh Ghovvati and Marzieh Gharouni wrote the main manuscript text and prepared figures.All authors reviewed the manuscript.

Corresponding authors

Correspondence to Shahrokh Ghovvati or Marzieh Gharouni.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2743 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassiri, M., Ghovvati, S., Gharouni, M. et al. Engineering Human Pancreatic RNase 1 as an Immunotherapeutic Agent for Cancer Therapy Through Computational and Experimental Studies. Protein J (2023). https://doi.org/10.1007/s10930-023-10171-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-023-10171-z

Keywords

Navigation