Skip to main content
Log in

N-Linked Glycoproteome Analysis of Diosorea alata Tuber Shows Atypical Glycosylation and Indicates Central Role of Glycosylated Proteins in Tuber Maturation

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Glycosylation is an important post translational modification in plants. First analysis of N-linked glycosylated proteins of Dioscorea alata using Concanavalin A lectin affinity chromatography enrichment coupled with label free quantification is presented. In total, 114 enriched glycoproteins were detected. Signal P and sub-cellular localization showed 42.2% of proteins to be secretory. These included peroxidases, endochitinases, calreticulin, calnexin, thaumatins and lipid transfer proteins. Gene Ontology and MapMan analysis predicted the enriched glycoproteins to be involved in processes essential for tuber maturation namely: signal transduction, lignification, protein trafficking, endoplasmic reticulum quality control and cell wall remodeling. This was supported by biochemical validation of the essential glycoproteins. Interestingly, out of the two dioscorin isoforms, Dio B was the only N-glycosylated form. In silico analysis showed O-glycosylation sites in the other form, Dio A suggesting its similarity with sporamin, the storage protein of sweet potato. Absence of signal peptide in Dio B and the presence of non-canonical motif hints towards its atypical glycosylation. The analysis revealed that N-glycosylation of Dio B isoform maintains the activities associated with Dioscorin at maturity and provides an overview of protein N-glycosylation, enriching the glycoproteome database of plants especially tubers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (partner repository with the dataset identifier PXD014944.

References

  1. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  2. Hofsteenge J, Mueller DR, De Beer T, Loeffler A, Richter WJ, Vliegenthart JFG (1994) New type of linkage between a carbohydrate and a protein: c-glycosylation of a specific tryptophan residue in human RNase Us. Biochemistry 33:13524–13530

    Article  CAS  PubMed  Google Scholar 

  3. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  PubMed  Google Scholar 

  4. Breitling J, Aebi M (2013) N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5(8):a013359

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hirabayashi J, Hashidate T, Kasai KI (2003) Glyco-catch method: a lectin affinity technique for glycoproteomic. J Biomol Tech 13:205–218

    Google Scholar 

  6. Dam S, Thaysen-Andersen M, Stenkjær E, Lorentzen A, Roepstorff P, Packer NH, Stougaard J (2013) Combined N-glycome and N-glycoproteome analysis of the Lotus japonicus seed globulin fraction shows conservation of protein structure and glycosylation in legumes. J Prot Res 12(7):3383–92

    Article  CAS  Google Scholar 

  7. Sougrakpam Y, Deswal R (2016) Hippophae rhamnoides N-glycoproteome analysis: a small step towards sea buckthorn proteome mining. Physiol mol bio plants 22(4):473–484

    Article  CAS  Google Scholar 

  8. Silva-Sanchez C, Chen S, Li J, Chourey PS (2014) A comparative glycoproteome study of developing endosperm in the hexose-deficient deficient miniature1 (mn1) seed mutant and its wild type Mn1 in maize. Front Plant Sci 5:63

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu SL, Medzihradszky KF, Wang ZY, Burlingame AL, Chalkley RJ (2016) N-glycopeptide profiling in Arabidopsis inflorescence. Mol Cell Prot 15:2048–2054

    Article  CAS  Google Scholar 

  10. Song W (2013) N-glycan occupancy of Arabidopsis N-glycoproteins. J Proteomics 93:343–355

    Article  CAS  PubMed  Google Scholar 

  11. Ruiz-May E, Hucko S, Howe KJ, Zhang S, Sherwood RW, Thannhauser TW, Rose JKC (2014) A comparative study of lectin affinity based plant N-glycoproteome profiling using tomato fruit as a model. Mol Cell Prot 13:566–579

    Article  CAS  Google Scholar 

  12. Catala C, Howe J, Hucko S, Rose JKC, Thannhauser TW (2011) Towards characterization of the glycoproteome of tomato (Solanum lycopersicum) fruit using Concanavalin A lectin affinity chromatography and LC-MALDI-MS/MS analysis. Proteomics 11:1530–1544

    Article  CAS  PubMed  Google Scholar 

  13. Kumar S, Kumar K, Pandey P, Rajamani V, Padmalatha KV, Dhandapani G, Kanakachari M, Leelavathi S, Kumar PA, Reddy VS (2013) Glycoproteome of elongating cotton fiber cells. Mol Cell Prot 12:3677–3689

    Article  CAS  Google Scholar 

  14. Barba-Espin G, Dedvisitsakul P, Hagglund P, Svensson B, Finnie C (2014) Gibberellic acid-induced aleurone layers responding to heat shock or tunicamycin provide insight into the N-glycoproteome, protein secretion, and endoplasmic reticulum stress. Plant Physiol 164:951–965

    Article  CAS  PubMed  Google Scholar 

  15. Mustafa G, Komatsu S (2014) Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00627

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marino K, Bones J, Kattla JJ, Rudd PM (2010) A systematic approach to protein glycosylation analysis: a path through the maize. Nat Chem Biol 6:713–723

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Deng X, Zhu D, Duan W, Zhang J, Yan Y (2021) N-linked glycoproteome analysis reveals central glycosylated proteins involved in wheat early seedling growth reveals central glycosylated proteins involved in wheat early seedling growth. Plant Physiol Biochem 163:327–337

    Article  CAS  PubMed  Google Scholar 

  18. Boisson M, Gomord V, Audran C, Berger N, Dubreucq B, Granier F, Lerouge P, Faye L, Caboche M, Lepiniec L (2001) Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J 20:1010–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rose JKC, Lee SJ (2010) Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol 153:433–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette- Laine AC, Gomord V, Faye L (1998) N-Glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Bio 38:31–48

    Article  CAS  Google Scholar 

  21. Rayon C, Lerouge P, Faye L (1998) The protein N-glycosylation in plants. J Exp Bot 49:1463–1472

    Article  CAS  Google Scholar 

  22. Meli VS, Ghosh S, Prabha TN, Chakraborty N, Chakraborty S, Datta A (2010) Enhancement of fruit shelf life by suppressing Nglycan processing enzymes. PNAS 107:2413–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghosh S, Meli VS, Kumar A, Thakur A, Chakraborty N, Chakraborty S, Datta A (2011) The N-glycan processing enzymes alpha-mannosidase and beta-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum. J Exp Bot 62(2):571–582

    Article  CAS  PubMed  Google Scholar 

  24. Welinder GK, Jørgensen M (2009) Covalent Structures of Potato Tuber Lipases (Patatins) and Implications for Vacuolar Import. J biol chemistry 284:9764–9769

    Article  CAS  Google Scholar 

  25. Lattová E, Brabcová A, Bartová V, Potěšil D, Bárta J, Zdráhal Z (2015) N-glycome profiling of patatins from different potato species of Solanum genus. J Agri and Food Chem 63(12):3243–3250

    Article  Google Scholar 

  26. Matsuoka K, Watanable N, Nakamura K (1995) O-glycosylation of a precursor to a sweet potato vacuolar protein, sporamin, expressed in tobacco cells. Plant J 8:877–889

    Article  CAS  PubMed  Google Scholar 

  27. Li C, Lu Y, Chen X, Yang M, Zou Z, Han J, Gao X, Tang R, Wang C, Huang L, Wang Z (2020) Analysis of the N-Glycoforms and Immunoactivity of Chinese Yam (Dioscorea opposita Thunb.) Glycoprotein 30CYGP. J Proteome Res 19(1):28–35

    Article  CAS  PubMed  Google Scholar 

  28. Martin FW and Degras L (2013) Tropical yams and their potential: part 6: Minor cultivated Dioscorea species. Agricultural Handbook Number 538 (Science and Education Administration, United States Department of Agriculture in cooperation with Agency for International Development, 1978).

  29. Harvey P, Boulter D (1983) Isolation and characterization of the storage protein of yam tubers (Dioscorea rotundata). Phytochemistry 22:1687–1693

    Article  CAS  Google Scholar 

  30. Xue Y-L, Miyakawa T, Sawano Y, Tanokura M (2012) Cloning of genes and enzymatic characterizations of novel dioscorin isoforms from Dioscorea japonica. Plant Sci 183:14–19

    Article  CAS  PubMed  Google Scholar 

  31. Sharma S, Deswal R (2021) Dioscorea alata tuber proteome analysis uncovers differentially regulated growth-associated pathways of tuber development. Plant Cell Physiol 62(1):191–204

    Article  CAS  PubMed  Google Scholar 

  32. Jhingan GD, Kumari S, Jamwal SV, Kalam H, Arora D, Jain N, Kumaar LK, Samal A, Rao KVS, Kumar D, Nandicoori VK (2016) Comparative proteomic analyses of avirulent, virulent, and clinical strains of mycobacterium tuberculosis identify strain-specific patterns. J Biol Chem 291(27):14257–14273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47:D442–D450

    Article  CAS  PubMed  Google Scholar 

  34. Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 2002:310–322

    Google Scholar 

  35. Juan J, Armenteros A, Konstantinos D, Tsirigos D, Sonderby CK, Peterson NT, Winther O, Brunak S, Heijne G, Nielsen H (2019) Signal P 5.0 improves signal peptide predictions using deep neural networks. Nature Biotech 37:420–423

    Article  Google Scholar 

  36. Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S (1998) NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 15(2):115–130

    Article  CAS  PubMed  Google Scholar 

  37. Emannuelsson O, Nielsen H, Brunak S, Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Mol Biol 300:1005–1016

    Article  Google Scholar 

  38. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  39. Almagro J, Armenteros J, Sønderby KK, Sønderby SK, Nielsen H, Winther O (2017) DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33:3387–3395

    Article  Google Scholar 

  40. Ashburner M (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939

    Article  CAS  PubMed  Google Scholar 

  42. Krogh A, Larsson B, Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J mol Bio 1:567–580

    Article  Google Scholar 

  43. Sandhu SK, Marwaha RS, Pandey SK (2007) Peroxidase as a biochemical marker of maturity levels in potato cultivars grown under short days. NZ J Crop Hortic Sci 35(1):171–175

    Article  Google Scholar 

  44. Erlanger BF, Kolowsky M, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  CAS  PubMed  Google Scholar 

  45. Wen CM, Tseng CH, Cheng CY, Li TK (2002) Purification, characterization and cloning of a Chitinase from Bacillus sp. NUTU2. Biotechnol Appl Biochem 35:213–219

    Article  CAS  PubMed  Google Scholar 

  46. Bu TT, Shen J, Chao Q, Shen Z, Yan Z, Zheng HY, Wang BC (2017) Dynamic N-glycoproteome analysis of maize seedling leaves during de-etiolation using Concanavalin A lectin affinity chromatography and a nano-LC-MS/MS-based iTRAQ approach. Plant Cell Rep 36(12):1943–1958

    Article  CAS  PubMed  Google Scholar 

  47. Conlan S, Griffiths LA, Turner M, Fid R, Tatham A, Ainsworth C, Shewry P (1998) Characterization of the yam tuber storage protein dioscorin. Plant Physiol 53:25–31

    Article  Google Scholar 

  48. Sharma S, Gupta R, Deswal R (2017) Dioscorea alata tuber proteome analysis shows multiple dioscorin isoforms and novel tuber proteins. PPB 114:128–137

    CAS  PubMed  Google Scholar 

  49. Kawahara R, Chernykh A, Alagesan K, Bern M, Cao W, Chalkley RJ, Cheng K, Choo MS, Edwards N, Goldman R, Hoffmann M (2021) Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods 18(11):1304–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang M, Chen GX, Lv DW, Li XH, Yan YM (2015) N-Linked glycoproteome profiling of seedling leaf in Brachypodium distachyon L. J Proteome Res 14:1727–1738

    Article  CAS  PubMed  Google Scholar 

  51. Ying J, Zhao J, Hou Y, Wang Y, Qiu J, Li Z (2017) Mapping the N-linked glycosites of rice (Oryza sativa L.) germinating embryos. PLoS ONE 12(3):e0173853

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zielinska DF, Gnad F, Schropp K, Wisniewski JR, Mann M (2012) Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite common core machinery. Mol Cell 46:542–548

    Article  CAS  PubMed  Google Scholar 

  53. Lowenthal MS, Davis KS, Formolo T, Kilpatrick LE, Phinney KW, Krag JJ, Betenbaugh MJ (2005) Controlling N-linked glycan site occupancy. BBA–General Subj 1726:121–137

    Article  Google Scholar 

  54. Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L. Planta 157(3):224–232

    Article  CAS  PubMed  Google Scholar 

  55. Hiner A, Hernandez-Ruiz J, Rodriguez-Lopez JN, Garcia-Canovas F, Brisset NC, Smith AT, Arnao MB, Acosta M (2002) Reactions of the class II peroxidases, lignin peroxidase and Arthromyces ramosus peroxidase, with hydrogen peroxide. J Biol Chem 277:26879–26885

    Article  CAS  PubMed  Google Scholar 

  56. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3):181–191

    Article  CAS  PubMed  Google Scholar 

  57. Ligat L, Lauber E, Albenne C, Clemente HS, Valot B, Zivy M, Pont- Lezica R, Arlat M, Jamet E (2011) Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins. Proteomics 11:1798–1813

    Article  CAS  PubMed  Google Scholar 

  58. Zhang X, Tang H, Du H, Liu Z, Bao Z, Shi Q (2020) Comparative N-glycoproteome analysis provides novel insights into the regulation mechanism in tomato (Solanum lycopersicum L.) during fruit ripening process. Plant Sci 293:110413

    Article  CAS  PubMed  Google Scholar 

  59. Denecke J, Carlsson LE, Vidal S, Hoeglund A-SEB, van Zeigl M, Sinlorgo KMC, Palva ET (1995) The tobacco homologue of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7:391–406

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nelson DE, Glaunsinger B, Bohnert HJ (1997) Abundant accumulation of the calcium-binding molecular chaperone calreticulin in specific oral tissues of Arabidopsis thaliana. Plant Physiol 114:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jia XY, He LH, Jing RL, Lia RZ (2009) Calreticulin: conserved protein and diverse functions in plants. Physiol Plant 136:127–138

    Article  CAS  PubMed  Google Scholar 

  62. Pouvreau L, Gruppen H, van Koningsveld G, Broek L, Voragen A (2003) The most abundant protease inhibitor in potato tuber (Cv. Elkana) is a serine protease inhibitor from the Kunitz family. J Agri Food Chem 51:5001–5005

    Article  CAS  Google Scholar 

  63. Cedzich A, Huttenlocher F, Kuhn BM, Pfannstiel J, Gabler L, Stintzi A, Schaller A (2009) The protease-associated domain and C-terminal extension are required for zymogen processing, sorting within the secretory pathway, and activity of tomato subtilase 3 (SlSBT3). J Biol Chem 284:14068–14078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Figueiredo J, Silva M, Figueiredo A (2018) Subtilisin-like proteases in plant defence: the past, the present and beyond. Mol Plant Pathol 19(4):1017–1028

    Article  CAS  PubMed  Google Scholar 

  65. Bause E, Legler G (1989) The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J 195(3):639–44

    Article  Google Scholar 

  66. Sharma S, Sehrawat A, Deswal R (2016) Asada-Halliwell pathway maintains redox status in Dioscorea alata tuber which helps in germination. Plant Sci 250:20–29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors also acknowledge Ms Mehak Bhalla in assisting in some of the experiments.

Funding

This work was partially supported by University Grants Commission (43–98/2014(SR) grant, Institute of Eminence (IoE) Grant (No.: IoE/2021/12/FRP) Government of India. There is no funding available to publish the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RD designed, supervised the experiments and edited the manuscript. SS and MB performed the experiments,SS analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Renu Deswal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10930_2023_10094_MOESM1_ESM.jpg

Supplementary file1 (JPG 114 KB)Supplementary Figure 1 N-linked glycoproteome profiling in D. alata tuber across four morphologically different stages of tuber growth namely: SI (root initiation), SII (vegetative growth), SIII (new tuber formation) and SIV (tuber maturation). (A) The extent of glycosylation across the developmental stages as predicted by PTM viewer. The extent of glycosylation was highest at tuber maturity. These predictions were validated by Con A affinoblot. (B) SDS PAGE (12%) was transferred to the nitrocellulose membrane (C) The proteins were transfered and checked using Ponceau -S stain and (D) the blot was decorated using Con A HRPO. The gel was done on equal volume basis (15µl protein) and stained using colloidal CBB stain.

10930_2023_10094_MOESM2_ESM.jpg

Supplementary file2 (JPG 51 KB)Supplementary Figure 2 Confirming the glycosylation of Con A enriched fractions by affinoblotting with Con A-HRPO. (A) SDS gel visualized using silver staining procedure. Lane-1 Marker (marked as M), BSA (66 kDa, lane 2) and Ovalbumin (45 kDa, lane 3) were used as negative and positive control respectively. Lane 4- D. alata tuber crude proteins (marked as C), Lane 5- Flow thru representing the non-specific proteins (marked as FT), Lane 6 and Lane7 represent the wash fractions (marked as W1 and W20 respectively). These fractions represent that the column was washed properly and are free of non- specifically bounded proteins and Lane 8- Lectin affinity chromatography elute fraction (marked as E1) (B) Blot stained with Ponceau-S for checking successful transfer of polypeptides. (C) Con-A affinoblot showing glycosylation signal.

10930_2023_10094_MOESM3_ESM.jpg

Supplementary file3 (JPG 83 KB)Supplementary Figure 3 (A) Venn daigram showing distribution of total identified proteins, significant proteins and proteins specific to elute fractions. (B) Box plots to depict the reproducibility within the biological replicates (C) Theoretical pI values of the proteins were obtained from the Uniprot database. The pI values were binned into 0.5 units and histogram was generated using MS Excel. (D) Distribution of hydropathicity of Dioscorea proteins. Full-length protein sequences were used to calculate the Grand Average of Hydropathicity (GRAVY). Negative values indicate hydrophilic proteins and positive values indicate hydrophobic proteins. Histogram was generated using MS Excel on their isolectric points.

10930_2023_10094_MOESM4_ESM.xlsx

Supplementary file4 (XLSX 15 KB)Supplementary Table-1 Excel sheet showing the SP/TM categories identified in the elute fraction.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Deswal, R. N-Linked Glycoproteome Analysis of Diosorea alata Tuber Shows Atypical Glycosylation and Indicates Central Role of Glycosylated Proteins in Tuber Maturation. Protein J 42, 78–93 (2023). https://doi.org/10.1007/s10930-023-10094-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10094-9

Keywords

Navigation