Skip to main content
Log in

Hippophae rhamnoides N-glycoproteome analysis: a small step towards sea buckthorn proteome mining

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Hippophae rhamnoides is a hardy shrub capable of growing under extreme environmental conditions namely, high salt, drought and cold. Its ability to grow under extreme conditions and its wide application in pharmaceutical and nutraceutical industry calls for its in-depth analysis. N-glycoproteome mining by con A affinity chromatography from seedling was attempted. The glycoproteome was resolved on first and second dimension gel electrophoresis. A total of 48 spots were detected and 10 non-redundant proteins were identified by MALDI–TOF/TOF. Arabidopsis thaliana protein disulfide isomerase-like 1-4 (ATPDIL1-4) electron transporter, protein disulphide isomerase, calreticulin 1 (CRT1), glycosyl hydrolase family 38 (GH 38) protein, phantastica, maturase k, Arabidopsis trithorax related protein 6 (ATXR 6), cysteine protease inhibitor were identified out of which ATXR 6, phantastica and putative ATPDIL1-4 electron transporter are novel glycoproteins. Calcium binding protein CRT1 was validated for its calcium binding by stains all staining. GO analysis showed involvement of GH 38 and ATXR 6 in glycan and lysine degradation pathways. This is to our knowledge the first report of glycoproteome analysis for any Elaeagnaceae member.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe M, Abe K, Kuroda M, Arai S (1992) Corn kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin. Eur J Biochem 209:933–937

    Article  CAS  PubMed  Google Scholar 

  • Bal LM, Meda V, Naik SN, Satya S (2011) Sea buckthorn berries: a potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Res Int 44:1718–1727

    Article  CAS  Google Scholar 

  • Basu M, Prasad R, Jayamurthy P, Pal K, Arumughan C, Sawhney RC (2007) Anti-atherogenic effects of sea buckthorn (Hippophae rhamnoides) seed oil. Phytomedicine 14:770–777

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk N, Sitailo L, Adler K, Malysheva L, Tewes A, Borisjuk L, Manteucel R (1998) Calreticulin expression in plant cells: developmental regulation, tissue specificity and intracellular distribution. Planta 206:504–514

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    Article  CAS  Google Scholar 

  • Campbell KP, MacLennan DH, Jorgensen AO (1983) Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye “stainsall”. J Biol Chem 258:11267–11273

    CAS  PubMed  Google Scholar 

  • Catala C, Howe KJ, Hucko S, Jocelyn KC, Rose JKC, Theodore W, Thannhauser TW (2011) Towards characterization of the glycoproteome of tomato (Solanum lycopersicum) fruit using Concanavalin A lectin affinity chromatography and LC-MALDI-MS/MS analysis. Proteomics 11:1530–1544

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary S, Sharma PC (2015) DeepSAGE based differential gene expression analysis under cold and freeze stress in sea buckthorn (Hippophae rhamnoides L.). PLoS One 10(3):e0121982. doi:10.1371/journal.pone.0121982

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen F, Hayes PM, Mulrooney DM, Pan A (1994) ldentification and characterization of cDNA clones encoding plant calreticulin in Barley. Plant Cell 6:835–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5(6):e11335. doi:10.1371/journal.pone.0011335

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrispeels MJ, Hartl PM, Sturm A, Faye L (1986) Characterization of the endoplasmic reticulum-associated precursor of Concanavalin A. J Biol Chem 261:10021–10024

    CAS  PubMed  Google Scholar 

  • Crofts AJ, Leborgne-Castel N, Pesca M, Vitale A, Denecke J (1998) BiP and calreticulin form an abundant complex that is independent of endoplasmic reticulum stress. Plant Cell 10:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denecke J, Carlsson LE, Vidal S, Hoeglund A-SEB, van Zeigl MJ, Sinlorgo KMC, Palva ET (1995) The tobacco homologue of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7:391–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatima T, Snyder CL, Schroeder WR, Cram D, Datla R (2012) Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed. PLoS One 7(4):e34099. doi:10.1371/journal.pone.0034099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galili G (2002) New insights into the regulation and functional significance of lysine metabolism in plants. Annu Rev Plant Biol 53:27–43

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Peng J, Berbel A, Madueño F, Chen R (2014) Regulation of compound leaf development by PHANTASTICA in Medicago truncatula1. Plant Physiol 164:216–228

    Article  CAS  PubMed  Google Scholar 

  • Ghangal R, Raghuvanshi S, Sharma PC (2012) Expressed sequence tag based identification and expression analysis of some cold inducible elements in sea buckthorn (Hippophae rhamnoides L.). Plant Physiol Biochem 51:123–128

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Deswal R (2012) Low temperature stress modulated secretome analysis and purification of antifreeze protein from Hippophae rhamnoides, a Himalayan wonder plant. J Proteome Res 11:2684–2696

    Article  CAS  PubMed  Google Scholar 

  • Gupta D, Tuteja N (2011) Chaperones and foldases in endoplasmic reticulum stress signaling in plants. Plant Signal Behav 6:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159

    Article  CAS  PubMed  Google Scholar 

  • Herman EM, Shannon LM, Chrispeels MJ (1985) Concanavalin A is synthesized as a glycoprotein precursor. Planta 165:23–29

    Article  CAS  PubMed  Google Scholar 

  • Hruba P, Tupy J (1999) N-glycoproteins specific for different stages of microspore and pollen development in tobacco. Plant Sci 141:29–40

    Article  CAS  Google Scholar 

  • Huang C, Hu G, Li F, Li Y, Wu J, Zhoua X (2013) NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in Nicotiana benthamiana. Physiol Plant 149:297–309

    CAS  PubMed  Google Scholar 

  • Jacob Y, Feng S, LeBlanc CA, Bernatavichute YV, Stroud H, Cokus S, Johnson LM, Pellegrini M, Jacobsen SE, Michaels SD (2009) ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol 16:763–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia XY, He LH, Jing RL, Lia RZ (2009) Calreticulin: conserved protein and diverse functions in plants. Physiol Plant 136:127–138

    Article  CAS  PubMed  Google Scholar 

  • Kim M, McCormick S, Timmermans M, Sinha N (2003) The expression domain of PHANTASTICA determines leaflet placement in compound leaves. Nature 424:438–443

    Article  CAS  PubMed  Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384

    Article  Google Scholar 

  • Komatsu S, Yamada E, Furukawa K (2009) Cold stress changes the concanavalin A-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids 36:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kumar K, Pandey P, Rajamani V, Padmalatha KV, Dhandapani G, Kanakachari M, Leelavathi S, Kumar PA, Reddy VS (2013) Glycoproteome of elongating cotton fiber cells. Mol Cell Proteom 12(12):3677–3689

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lastovickova M, Smetalova D, Bobalova J (2011) The combination of lectin affinity chromatography, gel electrophoresis and mass spectrometry in the study of plant glycoproteome: preliminary insights. Chromatographia 73:S113–S122

    Article  Google Scholar 

  • Lenartowska M, Lenartowski R, Smolijski DJ, Wróbel B, Niedojadio J, Jaworski K, Bednarska E (2009) Calreticulin expression and localization in plant cells during pollen–pistil interactions. Planta 231:67–77

    Article  CAS  PubMed  Google Scholar 

  • Leo FD, Volpicella M, Liuni S, Gallerani R, Ceci LR (2002) PLANT-PIs: a database for plant protease inhibitors and their genes. Nucleic Acids Res 3:347–348

    Article  Google Scholar 

  • Li Z, Onodera H, Ugaki M, Tanaka H, Komatsu S (2003) Characterization of calreticulin as a phosphoprotein interacting with cold-induced protein kinase in rice. Biol Pharm Bull 26(2):256–261

    Article  CAS  PubMed  Google Scholar 

  • Ligat L, Lauber E, Albenne C, Clemente HS, Valot B, Zivy M, Pont-Lezica R, Arlat M, Jamet E (2011) Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins. Proteomics 11:1798–1813

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Wang D, She J, Li J, Zhu JK, She YM (2016) Endoplasmic reticulum-associated N-glycan degradation of cold-upregulated glycoproteins in response to chilling stress in Arabidopsis. New Phytol. doi:10.1111/nph.14014

    PubMed Central  Google Scholar 

  • Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M (1999) Calreticulin: one protein, one gene, many functions. Biochem J 344:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minic Z, Jamet E, Negroni L, der Garabedian PA, Zivy M, Jouanin L (2007) A sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolases. J Exp Bot 58:2503–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers JM, Veis A, Sabsay B, Wheeler AP (1996) A method for enhancing the sensitivity of stains-all for phosphoproteins separated on SDS gels. Anal Biochem 240:300–302

    Article  CAS  PubMed  Google Scholar 

  • Navazio L, Baldan B, Dainese P, James P, Damiani E, Margreth A, Mariani P (1995) Evidence that Spinach leaves express not calsequestrin. Plant Physiol 109:983–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DE, Glaunsinger B, Bohnert HJ (1997) Abundant accumulation of the calcium-binding molecular chaperone calreticulin in specific oral tissues of Arabidopsis thaliana. Plant Physiol 114:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhoff V, Taube D, Arold N, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  CAS  PubMed  Google Scholar 

  • Noiva R (1999) Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Cell Dev Biol 10:481–490

    Article  CAS  Google Scholar 

  • Onda Y (2013) Oxidative protein-folding systems in plant cells. Int J Cell Biol 2013:1–15

    Article  Google Scholar 

  • Opas M, Tharin S, Milner RF, Michalak M (1996) Identification and localization of calreticulin in plant cells. Protoplasma 191:164–171

    Article  CAS  Google Scholar 

  • Palmisano G, Antonacci D, Larsen MR (2010) Glycoproteomic profile in wine: a ‘sweet’ molecular renaissance. J Proteome Res 9:6148–6159

    Article  CAS  PubMed  Google Scholar 

  • Pontvianne F, Blevins T, Pikaard CS (2010) Arabidopsis Histone Lysine Methyltransferases. Adv Bot Res 53:1–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Anderson JM, Urmeev FI, Goodwin SB (2003) Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol Biol 53:741–754

    Article  Google Scholar 

  • Ruiz-May E, Hucko S, Howe KJ, Zhang S, Sherwood RW, Thannhauser TW, Rose JKC (2013) A comparative study of lectin affinity based plant N-glycoproteome profiling using tomato fruit as a model. Mol Cell Proteom 13(2):566–579

    Article  Google Scholar 

  • Schouppe D, Ghesquiere B, Menschaert G, Vos WHD, Bourque S, Trooskens G, Proost P, Gevaert K, Damme EJ (2011) Interaction of the tobacco lectin with histone proteins. Plant Physiol 155:1091–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon PS, Bowles DJ (1992) The glycoprotein precursor of concanavalin A is converted to an active lectin by deglycosylation. EMBO J 11:1297–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Sanchez C, Chen S, Li J, Chourey PS (2014) A comparative glycoproteome study of developing endosperm in the hexose-deficient miniature1 (mn1) seed mutant and its wildtype Mn1 in maize. Front Plant Sci 5:1–14

    Article  Google Scholar 

  • Stroud H, Hale CJ, Feng S, Caro E, Jacob Y, Michaels SD, Jacobsen SE (2012) DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis. PLoS Genet 8(7):e1002808. doi:10.1371/journal.pgen.1002808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryakumar G, Gupta A (2011) Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.). J Ethnopharmacol 138:268–278

    Article  PubMed  Google Scholar 

  • Thannhauser TW, Shen M, Sherwood R, Howe K, Fish T, Yang Y, Chen W, Zhang S (2013) A workflow for large-scale empirical identification of cell wall N-linked glycoproteins of tomato (Solanum lycopersicum) fruit by tandem mass spectrometry. Electrophoresis 34:2417–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waites R, Hudson A (1995) phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154

    CAS  Google Scholar 

  • Xu G, Li C, Yao Y (2008) Proteomic analysis of drought stress-responsive proteins in Hippophae rhamnoides L. Plant Mol Biol Rep 27:153–161

    Article  CAS  Google Scholar 

  • Zhang M, Gaschen B, Blay W, Foley B, Haigwood N, Kuiken C, Korber B (2004) Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology 14:1229–1246

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu S, Takano T (2008) Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol 68:131–143

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Giboulot A, Zivy M, Valot B, Jamet E, Albenne C (2011) Combining various strategies to increase the coverage of the plant cell wall glycoproteome. Phytochemistry 72:1109–1123

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Chen GX, Lv DW, Li XH, Yan YM (2014) N-linked glycoproteome profiling of seedling leaf in Brachypodium distachyon L. J Proteome Res 14(4):1727–1738

    Article  Google Scholar 

  • Zorb C, Schmitt S, Muhling KH (2010) Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10:4441–4449

    Article  PubMed  Google Scholar 

  • Zoulias N, Koenig D, Hamidi A, McCormick S, Kim M (2012) A role for PHANTASTICA in medio-lateral regulation of adaxial domain development in tomato and tobacco leaves. Ann Bot 109:407–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank University Grant commission for providing Non-Net fellowship. This work was partially supported by research grant to RD from University of Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Deswal.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sougrakpam, Y., Deswal, R. Hippophae rhamnoides N-glycoproteome analysis: a small step towards sea buckthorn proteome mining. Physiol Mol Biol Plants 22, 473–484 (2016). https://doi.org/10.1007/s12298-016-0390-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-016-0390-y

Keywords

Navigation