Skip to main content

Advertisement

Log in

Investigating a putative transcriptional regulatory protein encoded by Rv1719 gene of Mycobacterium tuberculosis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis, the causative agent of tuberculosis, demonstrates immense plasticity with which it adapts to a highly dynamic and hostile host environment. This is facilitated by a web of signalling pathways constantly modulated by a multitude of proteins that regulate the flow of genetic information inside the pathogen. Transcription factors (TFs) belongs to one such family of proteins that modulate the signalling by regulating the abundance of proteins at the transcript level. In the current study, we have characterized the putative transcriptional regulatory protein encoded by the Rv1719 gene of Mycobacterium tuberculosis. This TF belongs to the IclR family of proteins with orthologs found in both bacterial and archaeal species. We cloned the Rv1719 gene into the pET28a expression vector and performed heterologous expression of the recombinant protein with E coli as the host. Further, optimization of the purification protocol by affinity chromatography and characterization of proteins for their functional viability has been demonstrated using various biochemical and/or biophysical approaches. Scale-up of purification yielded approximately 30 mg of ~ 28 kDa protein per litre of culture. In-silico protein domain analysis of Rv1719 protein predicted the presence of the helix-turn-helix (HTH) domain suggesting its ability to bind DNA sequence and modulate transcription; a hallmark of a transcriptional regulatory protein. Further, by performing electrophoretic mobility shift assay (EMSA) we demonstrated that the protein binds to a specific DNA fragment harboring the probable binding site of one of the predicted promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Who (2021) Global tuberculosis report. In: WHO, p 57

  2. Singh R, Dwivedi SP, Gaharwar US et al (2020) Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol 128:1547–1567

    Article  CAS  PubMed  Google Scholar 

  3. Yao C, Guo H, Li Q et al (2021) Prevalence of extensively drug-resistant tuberculosis in a Chinese multidrug-resistant TB cohort after redefinition. Antimicrob Resist Infect Control 10:126

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ehlers S, Schaible UE (2012) The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol 3:411

    PubMed  Google Scholar 

  5. Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pagan AJ, Ramakrishnan L (2014) Immunity and Immunopathology in the Tuberculous Granuloma. Cold Spring Harb Perspect Med 5:a018499

    Article  PubMed  CAS  Google Scholar 

  7. Flentie K, Garner AL, Stallings CL (2016) Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks. J Bacteriol 198:1360–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gazdik MA, Bai G, Wu Y et al (2009) Rv1675c (cmr) regulates intramacrophage and cyclic AMP-induced gene expression in Mycobacterium tuberculosis-complex mycobacteria. Mol Microbiol 71:434–448

    Article  CAS  PubMed  Google Scholar 

  9. Girardin RC, Bai G, He J et al (2018) AbmR (Rv1265) is a novel transcription factor of Mycobacterium tuberculosis that regulates host cell association and expression of the non-coding small RNA Mcr11. Mol Microbiol 110:811–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nandi M, Sikri K, Chaudhary N et al (2019) Multiple transcription factors co-regulate the Mycobacterium tuberculosis adaptation response to vitamin C. BMC Genomics 20:887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pushparajan AR, Ramachandran R, Gopi Reji J et al (2020) Mycobacterium tuberculosis TetR family transcriptional regulator Rv1019 is a negative regulator of the mfd-mazG operon encoding DNA repair proteins. FEBS Lett 594:2867–2880

    Article  CAS  PubMed  Google Scholar 

  12. Santos CL, Correia-Neves M, Moradas-Ferreira P et al (2012) A walk into the LuxR regulators of Actinobacteria: phylogenomic distribution and functional diversity. PLoS ONE 7:e46758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Korner H, Sofia HJ, Zumft WG (2003) Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27:559–592

    Article  CAS  PubMed  Google Scholar 

  14. Balhana RJ, Singla A, Sikder MH et al (2015) Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions. BMC Genomics 16:479

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Hu J, Zhao L, Yang M (2015) A GntR family transcription factor positively regulates mycobacterial isoniazid resistance by controlling the expression of a putative permease. BMC Microbiol 15:214

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Gao CH, Yang M, He ZG (2012) Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis. PLoS ONE 7:e36255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, He ZG (2012) The mycobacterial LysR-type regulator OxyS responds to oxidative stress and negatively regulates expression of the catalase-peroxidase gene. PLoS ONE 7:e30186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deng W, Wang H, Xie J (2011) Regulatory and pathogenesis roles of Mycobacterium Lrp/AsnC family transcriptional factors. J Cell Biochem 112:2655–2662

    Article  CAS  PubMed  Google Scholar 

  19. Singh S, Sevalkar RR, Sarkar D et al (2018) Characteristics of the essential pathogenicity factor Rv1828, a MerR family transcription regulator from Mycobacterium tuberculosis. FEBS J 285:4424–4444

    Article  CAS  PubMed  Google Scholar 

  20. Ansong C, Ortega C, Payne SH et al (2013) Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis. Chem Biol 20:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sunnarborg A, Klumpp D, Chung T et al (1990) Regulation of the glyoxylate bypass operon: cloning and characterization of iclR. J Bacteriol 172:2642–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Negre D, Cortay JC, Galinier A et al (1992) Specific interactions between the IclR repressor of the acetate operon of Escherichia coli and its operator. J Mol Biol 228:23–29

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto K, Ishihama A (2003) Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol 47:183–194

    Article  CAS  PubMed  Google Scholar 

  24. Molina-Henares AJ, Krell T, Eugenia Guazzaroni M et al (2006) Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol Rev 30:157–186

    Article  CAS  PubMed  Google Scholar 

  25. Li Q, Fu T, Li C et al (2016) Mycobacterial IclR family transcriptional factor Rv2989 is specifically involved in isoniazid tolerance by regulating the expression of catalase encoding gene katG. RSC Adv 6:54661–54667

    Article  CAS  Google Scholar 

  26. Angara RK, Yousuf S, Gupta SK et al (2018) An IclR like protein from mycobacteria regulates leuCD operon and induces dormancy-like growth arrest in Mycobacterium smegmatis. Tuberculosis (Edinb) 108:83–92

    Article  CAS  Google Scholar 

  27. Smith TM, Youngblom MA, Kernien JF et al(2021) Rapid adaptation of a complex trait during experimental evolution of Mycobacterium tuberculosis.:2021.2004.2008.439010

  28. Slabinski L, Jaroszewski L, Rychlewski L et al (2007) XtalPred: a web server for prediction of protein crystallizability. Bioinformatics 23:3403–3405

    Article  CAS  PubMed  Google Scholar 

  29. Hebditch M, Carballo-Amador MA, Charonis S et al (2017) Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics 33:3098–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walker JM (2005) The Proteomics Protocols Handbook. Humana Press

  31. De Souza GA, Leversen NA, Malen H et al (2011) Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteom 75:502–510

    Article  CAS  Google Scholar 

  32. Malen H, Pathak S, Softeland T et al (2010) Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. BMC Microbiol 10:132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Structural Genomics C, China Structural Genomics C, Northeast Structural Genomics C et al (2008) Protein production and purification. Nat Methods 5:135–146

    Article  Google Scholar 

  34. Sharma A, Chaudhuri TK (2017) Revisiting Escherichia coli as microbial factory for enhanced production of human serum albumin. Microb Cell Fact 16:173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    PubMed  PubMed Central  Google Scholar 

  36. Sankhyan A, Sharma T, Kaur T et al(2020) Heterologous expression of Salmonella typhi - Cytolethal distending toxin subunit B in E. coli and comparative viable bioactivity characterization. Journal of Applied Biochemistry & Laboratory Medicine 1

  37. Kim MJ, Park HS, Seo KH et al (2013) Complete solubilization and purification of recombinant human growth hormone produced in Escherichia coli. PLoS ONE 8:e56168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldstone RM, Moreland NJ, Bashiri G et al (2008) A new Gateway vector and expression protocol for fast and efficient recombinant protein expression in Mycobacterium smegmatis. Protein Expr Purif 57:81–87

    Article  CAS  PubMed  Google Scholar 

  39. Waegeman H, Soetaert W (2011) Increasing recombinant protein production in Escherichia coli through metabolic and genetic engineering. J Ind Microbiol Biotechnol 38:1891–1910

    Article  CAS  PubMed  Google Scholar 

  40. Rosano GL, Morales ES, Ceccarelli EA (2019) New tools for recombinant protein production in Escherichia coli: A 5-year update. Protein Sci 28:1412–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blum M, Chang HY, Chuguransky S et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49:D344–D354

    Article  CAS  PubMed  Google Scholar 

  42. De Castro E, Sigrist CJ, Gattiker A et al (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang C, Freddolino PL, Zhang Y (2017) COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Res 45:W291–W299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu Q, Peng Z, Zhang Y et al (2018) COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucleic Acids Res 46:W438–W442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Minch KJ, Rustad TR, Peterson EJ et al (2015) The DNA-binding network of Mycobacterium tuberculosis. Nat Commun 6:5829

    Article  CAS  PubMed  Google Scholar 

  48. Maloy SR, Nunn WD (1982) Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J Bacteriol 149:173–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Camus JC, Pryor MJ, Medigue C et al (2002) Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiol (Reading) 148:2967–2973

    Article  CAS  Google Scholar 

  50. Yang Z, Zeng X, Tsui SK (2019) Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome. BMC Genomics 20:394

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Zvi A, Ariel N, Fulkerson J et al (2008) Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses. BMC Med Genomics 1:18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Bashiri G, Baker EN (2015) Production of recombinant proteins in Mycobacterium smegmatis for structural and functional studies. Protein Sci 24:1–10

    Article  CAS  PubMed  Google Scholar 

  53. Lu D, Fillet S, Meng C et al (2010) Crystal structure of TtgV in complex with its DNA operator reveals a general model for cooperative DNA binding of tetrameric gene regulators. Genes Dev 24:2556–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rigali S, Derouaux A, Giannotta F et al (2002) Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277:12507–12515

    Article  CAS  PubMed  Google Scholar 

  55. Green J, Rolfe MD, Smith LJ (2014) Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 5:794–809

    Article  PubMed  PubMed Central  Google Scholar 

  56. Suvorova IA, Korostelev YD, Gelfand MS (2015) GntR Family of Bacterial Transcription Factors and Their DNA Binding Motifs: Structure, Positioning and Co-Evolution. PLoS ONE 10:e0132618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Kapopoulou A, Lew JM, Cole ST (2011) The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis (Edinb) 91:8–13

    Article  CAS  Google Scholar 

  58. Gomez RL, Jose L, Ramachandran R et al (2016) The multiple stress responsive transcriptional regulator Rv3334 of Mycobacterium tuberculosis is an autorepressor and a positive regulator of kstR. FEBS J 283:3056–3071

    Article  CAS  PubMed  Google Scholar 

  59. Zhao JH, Chen JH, Wang Y et al (2018) The putative compatible solute-binding protein ProX from Mycobacterium tuberculosis H37Rv: biochemical characterization and crystallographic data. Acta Crystallogr F Struct Biol Commun 74:231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Indian Council of Medical Research (Project ID; TB-Fellowship/29/2018-ECD-1) to MP, India-Singapore grant jointly sponsored by the Department of Science and Technology, India, and by A*STAR, Singapore, to A.K.P. (Project ID; INT/Sin/P-08/2015) and Intramural funding from Translational Health Science and Technology Institute (THSTI) to AKP. The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Author information

Authors and Affiliations

Authors

Contributions

AKP is the principal investigator of the study. AKP and CS contributed towards the conception and design of the study. MP, CS were responsible for the acquisition of data. ST performed the GFC analysis. MP, CS and AKP analysed and interpreted the data, with significant inputs from ST, SJ, BKB. MP, CS, AKP drafted the manuscript and all authors were involved in revising it critically for intellectual content, and have given final approval of the version to be published.

Corresponding authors

Correspondence to Chandresh Sharma or Amit Kumar Pandey.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, M., Tiwari, S., Johri, S. et al. Investigating a putative transcriptional regulatory protein encoded by Rv1719 gene of Mycobacterium tuberculosis. Protein J 41, 424–433 (2022). https://doi.org/10.1007/s10930-022-10062-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10062-9

Navigation