Skip to main content
Log in

Design of Bacillus fastidious Uricase Mutants Bearing Long Lagging Phases Before Exponential Decreases of Activities Under Physiological Conditions

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Under physiological conditions, Bacillus fastidious uricase (BFU) activity shows negligible lagging phase before the exponential decrease; mutants are thus designed for long lagging phases before exponential activity decreases. On homodimer surface of BFU (4R8X.pdb), the last fragment ANSEYVAL at the C-terminus forms a loop whose Y319 is H-bonded by the buried D257 in the same monomer. Within 1.5 nm from the α-carboxyl group of the last leucine (L322), E30, K26, D257, R258, E311, K312 and E318 from the same monomer plus D126 and K127 from a monomer of the other homodimer generate an electrostatic interaction network. Within 1.5 nm from Y319, D307 and R310 in the same monomer interact with ionized residues around the inter-chain β-sheet in the same homodimer. Mutagenesis of Y319R is designed to strengthen the original interactions and concomitantly generate new electrostatic attractions between homodimers. Under physiological conditions, the mutant V144A/Y319R showed an approximately 4 week lagging phase before the exponential activity decrease, an apparent half-life of activity nearly three folds of mutant V144A, but comparable activity. The introduction of ionizable residues into the C-terminus contacting the other homodimer for additional and/or stronger electrostatic attractions between homodimers may be a universal approach to thermostable mutants of uricases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. García Puig J, Mateos Antón F, López Jiménez M, Conthe Gutiérrez P (1986) Renal handling of uric acid in gout: impaired tubular transport of urate not dependent on serum urate levels. Metabolism 35:1147–1153

    Article  Google Scholar 

  2. So AK, Martinon F (2017) Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol 13:639–647

    Article  CAS  Google Scholar 

  3. Rock KL, Kataoka H, Lai JJ (2013) Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol 9:13–23

    Article  CAS  Google Scholar 

  4. Stamp LK, Dalbeth N (2019) Prevention and treatment of gout. Nat Rev Rheumatol 15:68–70

    Article  CAS  Google Scholar 

  5. Burns CM, Wortmann RL (2011) Gout therapeutics: new drugs for an old disease. Lancet 377:165–177

    Article  CAS  Google Scholar 

  6. Garay RP, El-Gewely MR, Labaune JP, Richette P (2012) Therapeutic perspectives on uricases for gout. Joint Bone Spine 79:237–242

    Article  CAS  Google Scholar 

  7. Lipsky PE, Calabrese LH, Kavanaugh A, Sundy JS, Wright D, Wolfson M, Becker MA (2014) Pegloticase immunogenicity: the relationship between efficacy and antibody development in patients treated for refractory chronic gout. Arthritis Res Ther 16:R60

    Article  Google Scholar 

  8. Stamp L, Dalbeth N (2014) Screening for hyperuricaemia and gout: a perspective and research agenda. Nat Rev Rheumatol 10:752–756

    Article  Google Scholar 

  9. Zhao Y, Yang X, Lu W, Liao H, Liao F (2009) Uricase based methods for determination of uric acid in serum. Microchim Acta 164:1–6

    Article  CAS  Google Scholar 

  10. Huang Y, Chen Y, Yang X, Zhao H, Hu X, Pu J, Liao J, Long G, Liao F (2015) Optimization of pH values to formulate the bireagent kit for serum uric acid assay. Biotechnol Appl Biochem 62:137–144

    Article  CAS  Google Scholar 

  11. Liu X, Wen M, Li J, Zhai F, Ruan J, Zhang L, Li S (2011) High-yield expression, purification, characterization, and structure determination of tag-free Candida utilis uricase. Appl Microbiol Biotechnol 92:529–537

    Article  CAS  Google Scholar 

  12. Kratzer JT, Lanaspa MA, Murphy MN, Cicerchi C, Graves CL, Tipton PA, Ortlund EA, Johnson RJ, Gaucher EA (2014) Evolutionary history and metabolic insights of ancient mammalian uricases. Proc Natl Acad Sci USA 111:3763–3768

    Article  CAS  Google Scholar 

  13. Shi Y, Wang T, Zhou XE, Liu QF, Jiang Y, Xu HE (2019) Structure-based design of a hyperthermostable aguricase for hyperuricemia and gout therapy. Acta Pharmacol Sin 40:1364–1372

    Article  CAS  Google Scholar 

  14. Feng J, Wang L, Liu H, Yang X, Liu L, Xie Y, Liu M, Zhao Y, Li X, Wang D, Zhan CG, Liao F (2015) Crystal structure of Bacillus fastidious uricase reveals an unexpected folding of the C-terminus residues crucial for thermostability under physiological conditions. Appl Microbiol Biotechnol 99:7973–7986

    Article  CAS  Google Scholar 

  15. Liao F, Feng T, Yang XL, Hu X, Jing Y, Rao J, Liao J (2020) Bacillus fastidius uricase mutants bearing V145A. China Patent 201610093491.8, 10 July 2020

  16. Feng T, Yang X, Wang D, Hu X, Liao J, Pu J, Zhao X, Zhan CG, Liao F (2017) A practical system for high-throughput screening of mutants of Bacillus fastidiosus uricase. Appl Biochem Biotechnol 81:667–681

    Article  Google Scholar 

  17. Nyborg AC, Ward C, Zacco A, Chacko B, Grinberg L, Geoghegan JC, Bean R, Wendeler M, Bartnik F, O’Connor E, Gruia F, Iyer V, Feng H, Roy V, Berge M, Miner JN, Wilson DM, Zhou D, Nicholson S, Wilker C, Wu CY, Wilson S, Jermutus L, Wu H, Owen DA, Osbourn J, Coats S, Baca M (2016) A therapeutic uricase with reduced immunogenicity risk and improved development properties. PLoS ONE 11:e0167935

    Article  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  19. Feng J, Liu H, Yang X, Gao A, Liao J, Feng L, Pu J, Xie Y, Long G, Li Y, Liao F (2013) Comparison of activity indexes for recognizing enzyme mutants of higher activity with uricase as model. Chem Cent J 7:69

    Article  Google Scholar 

  20. Liao F, Liu WL, Zhou QX, Zeng ZC, Zuo YP (2001) Assay of serum arylesterase activity by fitting to the reaction curve with an integrated rate equation. Clin Chim Acta 314:67–76

    Article  CAS  Google Scholar 

  21. Liu M, Yang X, Yuan Y, Tao J, Liao F (2011) PCFenzyme for kinetic analyses of enzyme reaction processes. Proc Environ Sci 8:582–587

    Article  CAS  Google Scholar 

  22. Zhao Y, Yang X, Li X, Bu Y, Deng P, Zhang C, Feng J, Xie Y, Zhu S, Yuan H, Yu M, Liao F (2009) Reversible inactivation of an intracellular uricase from Bacillus fastidiosus via dissociation of homotetramer into homodimers in solutions of low ionic strength. Biosci Biotechnol Biochem 73:2141–2144

    Article  CAS  Google Scholar 

  23. Wu J, Yang X, Wang D, Hu X, Liao J, Rao J, Pu J, Zhan CG, Liao F (2016) A numerical approach for kinetic analysis of the nonexponential thermoinactivation process of uricase. Protein J 35:318–329

    Article  CAS  Google Scholar 

  24. Tian H, Guo Y, Gao X, Yao W (2013) PEGylation enhancement of pH stability of uricase via inhibitive tetramer dissociation. J Pharm Pharmacol 65:53–63

    Article  CAS  Google Scholar 

  25. Hibi T, Hayashi Y, Fukada H, Itoh T, Nago T, Nishiya Y (2014) Intersubunit salt bridges with a sulfate anion control subunit dissociation and thermal stabilization of Bacillus sp. TB-90 urate oxidase. Biochemistry 53:3879–3888

    Article  CAS  Google Scholar 

  26. Hibi T, Kume A, Kawamura A, Itoh T, Fukada H, Nishiya Y (2016) Hyperstabilization of tetrameric Bacillus sp. TB-90 urate oxidase by introducing disulfide bonds through structural plasticity. Biochemistry 55:724–732

    Article  CAS  Google Scholar 

  27. Schein CH (1990) Solubility as a function of protein structure and solvent components. Biotechnology 8:308–317

    CAS  PubMed  Google Scholar 

  28. Shima S, Thauer RK, Ermler U, Durchschlag H, Tziatzios C, Schubert D (2000) A mutation affecting the association equilibrium of formyltransferase from the hyperthermophilic Methanopyrus kandleri and its influence on the enzyme’s activity and thermostability. Eur J Biochem 267:6619–6623

    Article  CAS  Google Scholar 

  29. Masetti M, Rocchia W (2014) Molecular mechanics and dynamics: numerical tools to sample the configuration space. Front Biosci 19:578–604

    Article  Google Scholar 

  30. Sheldon JP, Jennifer RC (2010) Protein engineering and design. CRC Press, Boca Raton, p 33487

    Google Scholar 

  31. Feng J, Li X, Yang X, Zhang C, Yuan Y, Pu J, Zhao Y, Xie Y, Yuan H, Bu Y, Liao F (2010) A new practical system for evaluating the pharmacological properties of uricase as a potential drug for hyperuricemia. Arch Pharm Res 33:1761–1769

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 81773625 and 30672009). Some mutants reported in this report were included in the invention patent granted in China (Patent No. 201610093491.8, Date of Patent, July 10, 2020). The first three authors contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolan Yang or Fei Liao.

Ethics declarations

Conflict of interest

The authors stated no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, L., Rao, J. et al. Design of Bacillus fastidious Uricase Mutants Bearing Long Lagging Phases Before Exponential Decreases of Activities Under Physiological Conditions. Protein J 40, 765–775 (2021). https://doi.org/10.1007/s10930-021-09999-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-09999-0

Keywords

Navigation