Skip to main content
Log in

A Numerical Approach for Kinetic Analysis of the Nonexponential Thermoinactivation Process of Uricase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Prior to the exponential decrease of activity of a uricase from Candida sp. during storage at 37 °C, there was a plateau period of about 4 days at pH 7.4, 12 days at pH 9.2, and about 22 days in the presence of 30 μM oxonate at pH 7.4 or 9.2, but no degradation of polypeptides and no activity of resolved homodimers. To reveal determinants of the plateau period, a dissociation model involving a serial of conformation intermediates of homotetramer were proposed for kinetic analysis of the thermoinactivation process. In the dissociation model, the roles of interior noncovalent interactions essential for homotetramer integrity were reflected by an equivalent number of the artificial weakest noncovalent interaction; to avoid covariance among parameters, the rate constant for disrupting the artificial weakest noncovalent interaction was fixed at the minimum for physical significance of other parameters; among thermoinactivation curves simulated by numerical integration with different sets of parameters, the one for least-squares fitting to an experimental one gave the solution. Results found that the equivalent number of the artificial weakest noncovalent interaction primarily determined the plateau period; kinetics rather than thermodynamics for homotetramer dissociation determined the thermoinactivation process. These findings facilitated designing thermostable uricase mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DD:

The denatured homodimer

H:

The nondenatured homodimer

k 1 :

The disruption rate of the weakest interaction

k −1 :

Reversal formation rate

k −2 :

The rate for the association of two nondenatured homodimers into the homotetramer

k 2 :

The rate for the denaturation of homodimer

LSF:

Least-squares fitting

m :

The equivalent number of the artificial weakest noncovalent interaction

PAGE:

Polyacrylamide electrophoresis

SDS-PAGE:

Sodium-dodecylsulfate polyacrylamide-electrophoresis

T1 :

The dynamic level of the homotetramer tolerating no disruption of interior noncovalent interactions essential for homotetramer integrity

Tm :

The dynamic level of representative conformational intermediate of the homotetramer (whose subscript indicated the conformational intermediate after the disruption of the mth interior noncovalent interaction in the dissociation pathway)

TA:

The total activity

T0.5 :

The temperature for reserving half of initial activity of an enzyme after the treatment for a customized time

References

  1. Schlesinger N, Yasothan U, Kirkpatrick P (2011) Pegloticase. Nat Rev Drug Discov 10:17–18

    Article  CAS  Google Scholar 

  2. Yang X, Yuan Y, Zhan C-G, Liao F (2012) Uricase as therapeutic agents to treat refractory gout: current states and future directions. Drug Dev Res 73:66–72

    Article  CAS  Google Scholar 

  3. Dinnel J, Moore BL, Skiver BM, Bose P (2015) Rasburicase in the management of tumor lysis: an evidence-based review of its place in therapy. Core Evid 10:23–38

    Google Scholar 

  4. Liao F, Zhao Y, Zhao L, Tao J, Zhu X, Liu L (2006) Evaluation of a kinetic uricase method for serum uric acid assay by predicting background absorbance of uricase reaction solution with an integrated method. J Zhejiang Univ Sci B 7:497–502

    Article  CAS  Google Scholar 

  5. Zhao Y, Yang X, Lu W, Liao H, Liao F (2009) Uricase based method for determination of uric acid in serum. Microchim Acta 164:1–6

    Article  CAS  Google Scholar 

  6. Huang Y, Chen Y, Yang X, Zhao H, Hu X, Pu J, Liao J, Long G, Liao F (2015) Optimization of pH values to formulate the bireagent kit for serum uric acid assay. Biotechnol Appl Biochem 62:137–144

    Article  CAS  Google Scholar 

  7. Liu Z, Lu D, Li J, Chen W, Liu Z (2009) Strengthening intersubunit hydrogen bonds for enhanced stability of recombinant urate oxidase from Aspergillus flavus:molecular simulations and experimental validation. Phys Chem Chem Phys 11:333–340

    Article  CAS  Google Scholar 

  8. Liu X, Wen M, Li J, Zhai F, Ruan J, Zhang L, Li S (2011) High-yield expression purification characterization and structure determination of tag-free Candida utilis uricase. Appl Microbiol Biotechnol 92:529–537

    Article  CAS  Google Scholar 

  9. Zhang C, Fan K, Luo H, Ma X, Liu R, Yang L, Hu C, Chen Z, Min Z, Wei D (2012) Characterization efficacy pharmacokinetics and biodistribution of 5 kDa mPEG modified tetrameric canine uricase variant. Int J Pharm 430:307–317

    Article  CAS  Google Scholar 

  10. Yamamoto K, Kojima Y, Kikuchi T, Shigyo T, Sugihara K, Takashio M, Emi S (1996) Nucleotide sequence of the uricase gene from Bacillus sp.TB-90. J Biochem 119:80–84

    Article  CAS  Google Scholar 

  11. Suzuki K, Sakasegawa S, Misaki H, Sugiyama M (2004) Molecular cloning and expression of uricase gene from Arthrobacter globiformis in Escherichia coli and characterization of the gene product. J Biosci Bioeng 98:153–158

    Article  CAS  Google Scholar 

  12. Zhao Y, Zhao L, Yang G, Tao J, Bu Y, Liao F (2006) Characterization of a uricase from Bacillus fastidious ATCC26904 and its application to serum uric acid assay by a patented kinetic uricase method. Biotechnol Appl Biochem 45:75–80

    Article  CAS  Google Scholar 

  13. Feng J, Wang L, Liu H, Yang X, Liu L, Xie Y, Liu M, Zhao Y, Li X, Wang D, Zhan C-G, Liao F (2015) Crystal structure of Bacillus fastidious uricase reveals an unexpected folding of the C-terminus residues crucial for thermostability under physiological conditions. Appl Microbiol Biotechnol 99:7973–7986

    Article  CAS  Google Scholar 

  14. Zhao Y, Yang X, Li X, Bu Y, Deng P, Zhang C, Feng J, Xie Y, Zhu S, Yuan H, Yu M, Liao F (2009) Reversible inactivation of an intracellular uricase from Bacillus fastidiosus via dissociation of homotetramer into homodimers in solutions of low ionic strength. Biosci Biotechnol Biochem 73:2141–2144

    Article  CAS  Google Scholar 

  15. Tian H, Guo Y, Gao X, Yao W (2013) PEGylation enhancement of pH stability of uricase via inhibitive tetramer dissociation. J Pharm Pharmacol 65:53–63

    Article  CAS  Google Scholar 

  16. Hibi T, Hayashi Y, Fukada H, Itoh T, Nago T, Nishiya Y (2014) Intersubunit salt bridges with a sulfate anion control subunit dissociation and thermal stabilization of Bacillus sp. TB-90 urate oxidase. Biochemistry 53:3879–3888

    Article  CAS  Google Scholar 

  17. Kotb E (2015) Characterization of a thermostable uricase isolated from Bacillus firmus DWD-33 and its application for uric acid quantification in human serum. Protein Pept Lett 22:402–409

    Article  CAS  Google Scholar 

  18. Hibi T, Kume A, Kawamura A, Itoh T, Fukada H, Nishiya Y (2016) Hyperstabilization of tetrameric bacillus sp. tb-90 urate oxidase by introducing disulfide bonds through structural plasticity. Biochemistry 55:724–732

    Article  CAS  Google Scholar 

  19. Bayol A, Dupin P, Boe JF, Claudy P, Létoffé JM (1995) Study of pH and temperature-induced transitions in urate oxidase (Uox-EC1.7.3.3) by microcalorimetry (DSC) size exclusion chromatography (SEC) and enzymatic activity experiments. Biophys Chem 54:229–235

    Article  CAS  Google Scholar 

  20. Poltorak OM, Chukhray ES, Torshin IY (1998) Dissociative thermal inactivation stability and activity of oligomeric enzymes. Biochemistry (Mosc) 63:303–311

    CAS  Google Scholar 

  21. Chukhrai ES, Atyaksheva LF (2010) A physical chemistry view of the activity stability and adsorption properties of enzymes. Russ J Phys Chem A 84:709–722

    Article  CAS  Google Scholar 

  22. Feng J, Liu H, Yang X, Gao A, Liao J, Feng L, Pu J, Xie Y, Long G, Li Y, Liao F (2013) Comparison of activity indexes for recognizing enzyme mutants of higher activity with uricase as model. Chem Cent J 7:69. doi:10.1186/1752-153X-7-69

    Article  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  24. Yang X, Liu B, Sang Y, Yuan Y, Pu J, Liu Y, Li Z, Feng J, Xie Y, Tang R, Yuan H, Liao F (2010) Kinetic analysis of the lactate-dehydrogenase-coupled reaction process and measurement of alanine transaminase by an integration strategy. Anal Sci 26:1193–1198

    Article  CAS  Google Scholar 

  25. Qi M, Zhang GP (2001) An investigation of model selection criteria for neural network time series forecasting. Eur J Oper Res 132:666–680

    Article  Google Scholar 

  26. Fridovich I (1965) The competitive inhibition of uricase by oxonate and by related derivatives of S-triazines. J Biol Chem 240:2491–2494

    CAS  Google Scholar 

  27. Chen Y, Jiang H, Peng F, Liao J, Yang X, Liao F (2012) Formulation and storage of Bacillus fastidious uricase as diagnosis enzyme. J Chongqing Med Univ 37:228–231

    CAS  Google Scholar 

  28. Cleland WW (1979) Optimizing coupled enzyme assays. Anal Biochem 99:142–145

    Article  CAS  Google Scholar 

  29. Aguda BD (1996) Emergent properties of coupled enzyme reaction systems 1. Switch Clust Behav Biophys Chem 61:1–7

    Article  CAS  Google Scholar 

  30. Kumar A, Josić K (2011) Reduced models of networks of coupled enzymatic reactions. J Theor Biol 278:87–106

    Article  CAS  Google Scholar 

  31. Laidler KJ (1987) Chemical kinetics, 3rd edn. Harper & Row, New York

    Google Scholar 

  32. Houston PL (2001) Chemical kinetics and reaction dynamics. McGraw-Hill, New York

    Google Scholar 

  33. Kosasih HJ, Last K, Rogerson FM, Golub SB, Gauci SJ, Russo VC, Stanton H, Wilson R, Lamande SR, Holden P, Fosang AJ (2016) A disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) forms catalytically active oligomers. J Biol Chem 291:3197–3208

    Article  CAS  Google Scholar 

  34. Tamulaitis G, Rutkauskas M, Zaremba M, Grazulis S, Tamulaitiene G, Siksnys V (2015) Functional significance of protein assemblies predicted by the crystal structure of the restriction endonuclease BsaWI. Nucleic Acids Res 43:8100–8110

    Article  CAS  Google Scholar 

  35. Satagopan S, Chan S, Perry LJ, Tabita FR (2014) Structure-function studies with the unique hexameric form II ribulose-15-bisphosphate carboxylase/oxygenase (Rubisco) from Rhodopseudomonas palustris. J Biol Chem 289:21433–21450

    Article  Google Scholar 

  36. Ronchi VP, Klein JM, Edwards DJ, Haas AL (2014) The active form of E6-associated protein (E6AP)/UBE3A ubiquitin ligase is an oligomer. J Biol Chem 289:1033–1048

    Article  CAS  Google Scholar 

  37. Vitlin Gruber A, Zizelski G, Azem A, Weiss C (2014) The Cpn10(1) co-chaperonin of A, thaliana functions only as a hetero-oligomer with Cpn20. PLoS One 9:e113835

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (Nos. 30672139, 31570862, 21402108), Sciences and Technology Commission of Yuzhong District of Chongqing (No. 20130135) and Education Ministry of China (No. 20125503110007). Miss Xin Wang prepared samples for Tandem MS–MS and Edman degradation analyses. The mutants of Bacillus fastidiosus uricase bearing plateau periods were already included in an invention patent application in China (Application No. 201610093491.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liao.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Jing Wu and Xiaolan Yang have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Yang, X., Wang, D. et al. A Numerical Approach for Kinetic Analysis of the Nonexponential Thermoinactivation Process of Uricase. Protein J 35, 318–329 (2016). https://doi.org/10.1007/s10930-016-9675-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-016-9675-9

Keywords

Navigation