Skip to main content
Log in

C.el Phosphatome: A Catalogue of Actual and Pseudo Phosphatases Based on In-Silico Studies in Caenorhabditis elegans

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Phosphatases are well known to carry out important functions via counter activity of kinases and they serve as mechanism for dephosphorylating the monophosphate esters from the phosphorylated serine, threonine, tyrosine and histidine residues. The biological relevance of phosphatases could be explored further employing newer technologies and models. Caenorhabditis elegans is a powerful genetic model system that bears significant homology with humans, hence providing with a precious tool towards studying important signalling pathways. We carried out the present study to catalogue the C. elegans protein phosphatome, referred here as ‘C.el phosphatome’ and annotated the corresponding dataset. We further classified these phosphatases based on presence of catalytic conserved motif; GDxHG, GDxVDRG, GNHE, RxxD, DGxxG, DG, GxxDN for Ser/Thr phosphatases, HC(x)5 R for tyrosine phosphatases and DxDxT/V for aspartate based phosphatases. Bioinformatics tool DAVID was employed to decipher the biological relevance of phosphatases. Our findings show Ser/Thr phosphatases (114), Tyr phosphatases (121) and Asp phosphatases (0) in C. elegans genome based on the hallmark sequence identification. Amongst them, 34 and 57 Ser/Thr and Tyr phosphatases respectively contain the catalytic motif. This catalogue offers a precious tool for further studies towards understanding important biological processes and disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

C. elegans :

Caenorhabditis elegans

C.el phosphatome:

Caenorhabditis elegans phosphatome

PTPs:

Protein tyrosine phosphatases

Ser/Thr phosphatase:

Serine/threonine phosphatase

Asp phosphatase:

Aspartate phosphatase

References

  1. Cohen P (2000) The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci 25(12):596–601

    Article  CAS  PubMed  Google Scholar 

  2. Stoker AW (2005) Protein tyrosine phosphatases and signalling. J Endocrinol 185(1):19–33. https://doi.org/10.1677/joe.1.06069

    Article  CAS  PubMed  Google Scholar 

  3. Tenreiro S, Eckermann K, Outeiro TF (2014) Protein phosphorylation in neurodegeneration: friend or foe? Front Mol Neurosci 7:42. https://doi.org/10.3389/fnmol.2014.00042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Taymans JM, Baekelandt V, Harvey K (2014) Regulation and targeting of enzymes mediating Parkinson’s disease pathogenesis: focus on Parkinson’s disease kinases, GTPases, and ATPases. Front Mol Neurosci 7:71. https://doi.org/10.3389/fnmol.2014.00071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Via A, Zanzoni A (2015) A prismatic view of protein phosphorylation in health and disease. Front Genet 6:131. https://doi.org/10.3389/fgene.2015.00131

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chen MJ, Dixon JE, Manning G (2017) Genomics and evolution of protein phosphatases. Sci Signal. https://doi.org/10.1126/scisignal.aag1796

    Article  PubMed Central  PubMed  Google Scholar 

  7. Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139(3):468–484. https://doi.org/10.1016/j.cell.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  8. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648. https://doi.org/10.1016/j.cell.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  9. Brautigan DL (2013) Protein Ser/Thr phosphatases—the ugly ducklings of cell signalling. FEBS J 280(2):324–345. https://doi.org/10.1111/j.1742-4658.2012.08609.x

    Article  CAS  PubMed  Google Scholar 

  10. Lehmann S, Bass JJ, Szewczyk NJ (2013) Knockdown of the C. elegans kinome identifies kinases required for normal protein homeostasis, mitochondrial network structure, and sarcomere structure in muscle. Cell Commun Signal 11:71. https://doi.org/10.1186/1478-811X-11-71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  PubMed  Google Scholar 

  12. Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. https://doi.org/10.1093/nar/gkn923

    Article  CAS  PubMed  Google Scholar 

  13. UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  14. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711. https://doi.org/10.1016/j.cell.2004.05.018

    Article  CAS  PubMed  Google Scholar 

  15. Zhang ZY (2003) Mechanistic studies on protein tyrosine phosphatases. Prog Nucleic Acid Res Mol Biol 73:171–220

    Article  CAS  PubMed  Google Scholar 

  16. Wang WQ, Sun JP, Zhang ZY (2003) An overview of the protein tyrosine phosphatase superfamily. Curr Top Med Chem 3(7):739–748

    Article  CAS  PubMed  Google Scholar 

  17. Kaneko T, Joshi R, Feller SM, Li SS (2012) Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Cell Commun Signal 10(1):32. https://doi.org/10.1186/1478-811X-10-32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bollu LR, Mazumdar A, Savage MI, Brown PH (2017) Molecular pathways: targeting protein tyrosine phosphatases in cancer. Clin Cancer Res 23(9):2136–2142. https://doi.org/10.1158/1078-0432.CCR-16-0934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ma GX, Zhou RQ, Hu SJ, Huang HC, Zhu T, Xia QY (2014) Molecular characterization and functional analysis of serine/threonine protein phosphatase of Toxocara canis. Exp Parasitol 141:55–61. https://doi.org/10.1016/j.exppara.2014.03.019

    Article  CAS  PubMed  Google Scholar 

  20. Chen X, Liu J, Zhang Y (2014) Cantharidin impedes the activity of protein serine/threonine phosphatase in Plutella xylostella. Mol BioSyst 10(2):240–250. https://doi.org/10.1039/c3mb70410f

    Article  CAS  PubMed  Google Scholar 

  21. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Moller NP (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21(21):7117–7136. https://doi.org/10.1128/MCB.21.21.7117-7136.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemee A (2007) Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 8(3):234–244. https://doi.org/10.1038/nrm2126

    Article  CAS  PubMed  Google Scholar 

  23. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205. https://doi.org/10.1093/nar/gkt1076

    Article  CAS  PubMed  Google Scholar 

  24. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  CAS  PubMed  Google Scholar 

  25. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37(Database issue):D211–D215. https://doi.org/10.1093/nar/gkn785

    Article  CAS  PubMed  Google Scholar 

  26. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY, Dosztanyi Z, El-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto SC, Wu CH, Xenarios I, Yeh LS, Young SY, Mitchell AL (2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45(D1):D190–D199. https://doi.org/10.1093/nar/gkw1107

    Article  CAS  PubMed  Google Scholar 

  27. Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5(5):387–398. https://doi.org/10.1038/nrd2031

    Article  CAS  PubMed  Google Scholar 

  28. Plowman GD, Sudarsanam S, Bingham J, Whyte D, Hunter T (1999) The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc Natl Acad Sci USA 96(24):13603–13610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goberdhan DC, Paricio N, Goodman EC, Mlodzik M, Wilson C (1999) Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev 13(24):3244–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Son S, Osmani SA (2009) Analysis of all protein phosphatase genes in Aspergillus nidulans identifies a new mitotic regulator, fcp1. Eukaryot Cell 8(4):573–585. https://doi.org/10.1128/EC.00346-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tonks NK (2009) Pseudophosphatases: grab and hold on. Cell 139(3):464–465. https://doi.org/10.1016/j.cell.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  32. Reiterer V, Eyers PA, Farhan H (2014) Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. Trends Cell Biol 24(9):489–505. https://doi.org/10.1016/j.tcb.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  33. Lehmann S, Bass JJ, Barratt TF, Ali MZ, Szewczyk NJ (2017) Functional phosphatome requirement for protein homeostasis, networked mitochondria, and sarcomere structure in C. elegans muscle. J Cachexia Sarcopenia Muscle 8(4):660–672. https://doi.org/10.1002/jcsm.12196

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

SF acknowledges financial assistance for Senior Research Fellowship from Indian Council of Medical Research (BMS/FW/Bioch/2014-26260/Feb-15/06/UP/Govt). CDRI communication number: 9742.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Nazir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent of all authors has been obtained.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, S., Shukla, S. & Nazir, A. C.el Phosphatome: A Catalogue of Actual and Pseudo Phosphatases Based on In-Silico Studies in Caenorhabditis elegans. Protein J 37, 572–580 (2018). https://doi.org/10.1007/s10930-018-9794-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-018-9794-6

Keywords

Navigation