The Protein Journal

, Volume 36, Issue 2, pp 112–122 | Cite as

Development of an in vitro Bioassay for Recombinant Human Erythropoietin (rHuEPO) Based on Proliferative Stimulation of an Erythroid Cell Line and Analysis of Sialic Acid Dependent Microheterogeneity: UT-7 Cell Bioassay

  • Manoj Kumar Metta
  • Vasavi Malkhed
  • Srinivasan Tantravahi
  • Uma Vuruputuri
  • Rajkumar Kunaparaju


Determination of biological activity and its comparison with clinical behavior is important in the quality assessment of therapeutic glycoproteins. In vivo studies are usually employed for evaluating bioactivity of these glycomolecules. However, alternative methods are required to simplify the bioassay and avoid ethical issues associated with in vivo studies. Negatively charged sialic acid residues are known to be critical for in vivo bioactivity of rHuEPO. To address this need, we employed the human acute myeloid leukemia cell line UT-7 for the determination of proliferative stimulation induced by rHuEPO. Relative potencies of various intact and sugar-trimmed rHuEPO preparations were estimated using the International Standard for Human r-DNA derived EPO (87/684) as a reference for bioactivity. The cellular response was measured with a multi-channel photometer using a colorimetric microassay, based on the metabolism of the Resazurin sodium by cell viability. For a resourceful probing of physiological features of rHuEPO with significance, we obtained partly or completely desialylated rHuEPO digested by the neuraminidase enzyme without degradation of carbohydrates. Two-fold higher specific activity was shown by asialoerythropoietin in in vitro analysis compared with the sialoerythropoietin. Further, computational studies were also carried out to construct the 3D model of the erythropoietin (EPO) protein structure using standard comparative modeling methods. The quality of the model was validated using Procheck and protein structure analysis (ProSA) server tools. N–glycan units were constructed; moreover, EPO protein was glycosylated at potential glycosylation amino acid residue sites. The method described should be suitable for potency assessments of pharmaceutical formulations of rHuEPO (European Pharmacopeia, 2016).


UT-7 cell line Biological activity In vitro bioassay Recombinant human erythropoietin Procheck and ProSA 



Recombinant Human Erythropoietin




Granulocyte Colony Stimulating Factor


Granulocyte Macrophage Colony Stimulating Factor


Interleukin 3


Interleukin 9


Insulin Like Growth Factor 1


Fetal Bovine Serum


Burst Forming Unit-Erythroid


Colony Forming Unit-Erythroid


Colony Forming Unit-Granulocyte, Erythroid, Macrophage, Megakaryocyte

Erythropoietin Receptor


Chinese Hamster Overy






I am grateful to Usha Biotech and GITAM University for their support in carrying out this research study. I would also like to acknowledge the Head, Department of Chemistry and the Principal, University College of Science, Osmania University for providing the facilities to carry out this bioinformatics study.


  1. 1.
    Erythropoietin concentrate solution, Assay, European Pharmacopeia (2016)Google Scholar
  2. 2.
    Molineux G, Sinclair A (2009) Biology of erythropoietin. In: Parnham MJ, Bruinvels J, eds. Erythropoietins, erythropoietic factors, and erythropoiesis (2nd ed.) Basel: Birkhauser 2009:41–60CrossRefGoogle Scholar
  3. 3.
    Wang FF, Kung CKH, Goldwasser E (1985) Some chemical properties of human erythropoietin. Endocrinology 116:2286–2292CrossRefGoogle Scholar
  4. 4.
    Roberts D, Smith DJ (1994) Erythropoietin: Induction of synthesis to signal transduction. J Mol Endocrinol 12:131–148CrossRefGoogle Scholar
  5. 5.
    Choi D, Kim M, Park J (1996) Erythropoietin: physico and biochemical analysis. J Chromatogr B Biomed Appl 687:189–199CrossRefGoogle Scholar
  6. 6.
    Dordal MS, Wang FF, Goldwasser E (1985) The role of carbohydrate in erythropoietin action. Endocrinology 116:2293–2299CrossRefGoogle Scholar
  7. 7.
    Lai PH, Everett R, Wang FF (1986) Structural characterization of human erythropoietin. J Biol Chem 261:3116–3121Google Scholar
  8. 8.
    Tran AD, Park S, Lisi PJ, Huynh OT, Ryall RR, Lane PA (1991) Separation of carbohydrate-mediated microheterogeneity of recombinant human erythropoietin by free solution capillary electrophoresis. Effects of pH, buffer type and organic additives. J Chromatogr A 542:459–471CrossRefGoogle Scholar
  9. 9.
    Rudd PM, Dwek RA (1997) Glycosylation: heterogeneity and the 3D structure of proteins. Crit Rev Biochem Mol Biol 32(1):1–100CrossRefGoogle Scholar
  10. 10.
    Sasaki H, Bothner B, Dell A, Fukuda M (1987) Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem 262(25):12059–12076Google Scholar
  11. 11.
    Rush RS, Derby PL, Smith DM, Merry C, Rogers G, Rohde MF, Katta V (1995) Microheterogeneity of erythropoietin carbohydrate structure. Anal Chem 67(8):1442–1452CrossRefGoogle Scholar
  12. 12.
    Kiss Z, Elliott S, Jedynasty K, Tesar V, Szegedi J (2010) Discovery and basic pharmacology of erythropoiesisstimulating agents (ESAs), including the hyperglycosylated ESA, darbepoetin alfa: an update of the rationale and clinical impact. Eur J Clin Pharmacol 66(4):331–340CrossRefGoogle Scholar
  13. 13.
    Miura Y, Komatsu N, Suda T (1990) Growth and differentiation of two human megakaryoblastic cell lines: CMK and UT-7. Prog Clin Biol Res 356:259Google Scholar
  14. 14.
    Komatsu N, Fujita H (1993) Induced megakaryocytic maturation of the human leukemic cell line, UT-7, results in down-modulation of erythropoietin receptor gene expression. Cancer Res 53(5):1156–1161Google Scholar
  15. 15.
    Mire-Sluis AR, Gaines-Das R, Thorpe R (1995) Immunoassays for detecting cytokines: what are they really measuring? J Immunol Methods 186:157–160CrossRefGoogle Scholar
  16. 16.
    Bird C, Wadhwa M, Thorpe R (1991) Development of immunoassays for human interleukin 3 and interleukin 4, some of which discriminate between different recombinant DNA-derived molecules. Cytokine 3:562–567CrossRefGoogle Scholar
  17. 17.
    Moller B, Mogensen SC, Wendelboe P, Bendtzen K, Petersen CM (1991) Bioactive and inactive forms of tumor necrosis factor- in spinal fluid from patients with meningitis. J Infect Dis 163:886–889CrossRefGoogle Scholar
  18. 18.
    Onyango JD, Burri C, Brun R (2000) An automated biological assay to determine levels of the trypanocidal drug melarsoprol in biological fluids. Acta Trop 74:95–100CrossRefGoogle Scholar
  19. 19.
    Gazzano-Santoro H, Chen A, Casto B, Chu H, Gilkerson E, Mukku V, Canova-Davis E, Kotts C (1999) Validation of a rat pheochromocytoma (PC12)-based cell survival assay for determining biological potency of recombinant human nerve growth factor. J Pharm Biomed Anal 21:945–959CrossRefGoogle Scholar
  20. 20.
    Canosi U, Mascia M, Gazza L, Serlupi-Crescenzi O, Donini S, Antonetti F, Galli G (1996) A highly precise reporter gene bioassay for type I interferon. J Immunol Methods 199(1):69–76CrossRefGoogle Scholar
  21. 21.
    Adams RL (1969) The effect of endogenous pools of thymidylate on the apparent rate of DNA synthesis. Exp Cell Res 56:55–58CrossRefGoogle Scholar
  22. 22.
    Khoo SK, Hurst T, Webb MJ, Dickie G, Kearsley J, Parsons PG, Mackay EV (1988) Measurement of tumor cell activity in short-term primary culture. Clinical significance in women with ovarian cancer. Cancer 61:1579–1586CrossRefGoogle Scholar
  23. 23.
    Westermark K, Karlsson FA, Westermark B (1983) Epidermal growth factor modulates thyroid growth and function in culture. Endocrinology 112(5):1680–1686CrossRefGoogle Scholar
  24. 24.
    Mosmann T (1983) Epidermal growth factor modulates thyroid growth and function in culture. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  25. 25.
    Raz B, Iten M, Grether-Buhler Y, Kaminsky R, Brun R (1997) The Alamar Blue® assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop 68:139–147CrossRefGoogle Scholar
  26. 26.
    Crouch SPM, Kozlowski R, Slater KJ, Fletcher J (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160:81–88CrossRefGoogle Scholar
  27. 27.
    Metta MK, Kunaparaju RK, Tantravahi S (2016) Rapid amplification system for recombinant protein production in Chinese Hamster Ovary (CHO) Cells. Cell Mol Biol 62(2):101–106Google Scholar
  28. 28.
    Erythropoietin concentrate solution (2016) Electrophoresis 2.2.31, European PharmacopeiaGoogle Scholar
  29. 29.
    Kreft S, Kreft M (2009) Quantification of dichromatism: a characteristic of color in transparent materials. J Opt Soc Am A 26:1576–1581CrossRefGoogle Scholar
  30. 30.
    Page B, Page M, Noel C (1993) A new fluorimetric assay for cytotoxicity measurements in vitro. Int J Oncol 3:473–476Google Scholar
  31. 31.
    Matsumoto K, Yamada Y, Takahashi M, Todoroki T, Mizoguchi K, Misaki H, Yuki H (1990) Fluorometric determination of carnitine in serum with immobilized carnitine dehydrogenase and diaphorase. J Clin Chem 36:2072–2076Google Scholar
  32. 32.
    Belinsky M, Jaiswal AK (1993) NAD(P)H: quinone oxidoreductase1DT-diaphorase expression in normal and tumor tissues. Cancer Metastasis Rev 12:103–117CrossRefGoogle Scholar
  33. 33.
    Chikuba K, Yubisui T, Shirabe K, Takeshita M (1994) Cloning and nucleotide sequence of a cDNA of the human erythrocyte NADPH-flavin reductase. Biochem Biophys Res Commun 198:1170–1176CrossRefGoogle Scholar
  34. 34.
    Moon TW, Mommsen TP (2005) Biochemistry and molecular biology of fishes. Environ Toxicol 6:51–56Google Scholar
  35. 35.
    Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36(Web Server issue):W5-9Google Scholar
  36. 36.
    Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucl Acids Res 43(W1):W389–W394CrossRefGoogle Scholar
  37. 37.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucl Acids Res 28(1):235–242CrossRefGoogle Scholar
  38. 38.
    Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539CrossRefGoogle Scholar
  39. 39.
    Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 47:5.6.1–32Google Scholar
  40. 40.
    Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815CrossRefGoogle Scholar
  41. 41.
    Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6(5):1509–1519CrossRefGoogle Scholar
  42. 42.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291CrossRefGoogle Scholar
  43. 43.
    Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three imensional structures of proteins. Nucleic Acids Res 35(suppl 2):W407–W410CrossRefGoogle Scholar
  44. 44.
    Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17(4):355–362CrossRefGoogle Scholar
  45. 45.
    Bohne-Lang A, von der Lieth CW (2005) GlyProt: in silico glycosylation of proteins. Nucleic Acids Res 33(suppl 2):W214–W219CrossRefGoogle Scholar
  46. 46.
    Bohne A, Lang E, von der Lieth CW (1999) SWEET- WWW-based rapid 3D construction of oligo- and polysaccharides. Bioinformatics 15(9):767–768CrossRefGoogle Scholar
  47. 47.
    Bohne A, Lang E, von der Lieth CW (1999) W3-SWEET: carbohydrate modeling by internet. Mol Model Annu 4(1):33–43CrossRefGoogle Scholar
  48. 48.
    Fukuda MN, Sasaki H, Lopez L, Fukuda M (1989) Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73:84–89Google Scholar
  49. 49.
    Spivak JL, Hogans BB (1989) The in vivo metabolism of recombinant human erythropoietin in the rat. Blood 73:90–99Google Scholar
  50. 50.
    Tsodikov OV, Record MT, Sergeev YV (2002) Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem 23(6):600–609CrossRefGoogle Scholar
  51. 51.
    Moore E, Bellomo R (2011) Erythropoietin (EPO) in acute kidney injury. Ann Intensive Care 1:3:53Google Scholar
  52. 52.
    Tanaka T, Nangaku M (2012) Recent advances and clinical application of erythropoietin and erythropoiesis-stimulating agents. Exp Cell Res 318(9):1068–1073CrossRefGoogle Scholar
  53. 53.
    Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, Ponting I (2004) Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol 32:1146–1155CrossRefGoogle Scholar
  54. 54.
    Takeuchi M, Kobata A (1991) Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1:337–346CrossRefGoogle Scholar
  55. 55.
    Ramos AS, Schmidt CA, Andrade SS, Fronza M, Rafferty B, Dalmora SL (2003) Biological evaluation of recombinant human erythropoietin in pharmaceutical products. Braz J Med Biol Res 36(11):1561–1569CrossRefGoogle Scholar
  56. 56.
    Sinclair AM (2013) Erythropoiesis stimulating agents: approaches to modulate activity. Biologics 7:161–174Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Biotechnology, GISGITAM UniversityVisakhapatnamIndia
  2. 2.Usha BiotechHyderabadIndia
  3. 3.Department of Chemistry, University College of Science SaifabadOsmania UniversityHyderabadIndia
  4. 4.Department of Chemistry, University College of ScienceOsmania UniversityHyderabadIndia

Personalised recommendations