Skip to main content
Log in

Development of an in vitro Bioassay for Recombinant Human Erythropoietin (rHuEPO) Based on Proliferative Stimulation of an Erythroid Cell Line and Analysis of Sialic Acid Dependent Microheterogeneity: UT-7 Cell Bioassay

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Determination of biological activity and its comparison with clinical behavior is important in the quality assessment of therapeutic glycoproteins. In vivo studies are usually employed for evaluating bioactivity of these glycomolecules. However, alternative methods are required to simplify the bioassay and avoid ethical issues associated with in vivo studies. Negatively charged sialic acid residues are known to be critical for in vivo bioactivity of rHuEPO. To address this need, we employed the human acute myeloid leukemia cell line UT-7 for the determination of proliferative stimulation induced by rHuEPO. Relative potencies of various intact and sugar-trimmed rHuEPO preparations were estimated using the International Standard for Human r-DNA derived EPO (87/684) as a reference for bioactivity. The cellular response was measured with a multi-channel photometer using a colorimetric microassay, based on the metabolism of the Resazurin sodium by cell viability. For a resourceful probing of physiological features of rHuEPO with significance, we obtained partly or completely desialylated rHuEPO digested by the neuraminidase enzyme without degradation of carbohydrates. Two-fold higher specific activity was shown by asialoerythropoietin in in vitro analysis compared with the sialoerythropoietin. Further, computational studies were also carried out to construct the 3D model of the erythropoietin (EPO) protein structure using standard comparative modeling methods. The quality of the model was validated using Procheck and protein structure analysis (ProSA) server tools. N–glycan units were constructed; moreover, EPO protein was glycosylated at potential glycosylation amino acid residue sites. The method described should be suitable for potency assessments of pharmaceutical formulations of rHuEPO (European Pharmacopeia, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

rHuEPO:

Recombinant Human Erythropoietin

EPO:

Erythropoietin

G-CSF:

Granulocyte Colony Stimulating Factor

GM-CSF:

Granulocyte Macrophage Colony Stimulating Factor

IL-3:

Interleukin 3

IL-9:

Interleukin 9

IGF-1:

Insulin Like Growth Factor 1

FBS:

Fetal Bovine Serum

BFU-E:

Burst Forming Unit-Erythroid

CFU-E:

Colony Forming Unit-Erythroid

CFU-GEMM:

Colony Forming Unit-Granulocyte, Erythroid, Macrophage, Megakaryocyte

Erythropoietin Receptor:

EPO-R

Chinese Hamster Overy:

CHO

MTS:

(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium).

References

  1. Erythropoietin concentrate solution, Assay, European Pharmacopeia (2016)

  2. Molineux G, Sinclair A (2009) Biology of erythropoietin. In: Parnham MJ, Bruinvels J, eds. Erythropoietins, erythropoietic factors, and erythropoiesis (2nd ed.) Basel: Birkhauser 2009:41–60

    Chapter  Google Scholar 

  3. Wang FF, Kung CKH, Goldwasser E (1985) Some chemical properties of human erythropoietin. Endocrinology 116:2286–2292

    Article  CAS  Google Scholar 

  4. Roberts D, Smith DJ (1994) Erythropoietin: Induction of synthesis to signal transduction. J Mol Endocrinol 12:131–148

    Article  CAS  Google Scholar 

  5. Choi D, Kim M, Park J (1996) Erythropoietin: physico and biochemical analysis. J Chromatogr B Biomed Appl 687:189–199

    Article  CAS  Google Scholar 

  6. Dordal MS, Wang FF, Goldwasser E (1985) The role of carbohydrate in erythropoietin action. Endocrinology 116:2293–2299

    Article  CAS  Google Scholar 

  7. Lai PH, Everett R, Wang FF (1986) Structural characterization of human erythropoietin. J Biol Chem 261:3116–3121

    CAS  Google Scholar 

  8. Tran AD, Park S, Lisi PJ, Huynh OT, Ryall RR, Lane PA (1991) Separation of carbohydrate-mediated microheterogeneity of recombinant human erythropoietin by free solution capillary electrophoresis. Effects of pH, buffer type and organic additives. J Chromatogr A 542:459–471

    Article  CAS  Google Scholar 

  9. Rudd PM, Dwek RA (1997) Glycosylation: heterogeneity and the 3D structure of proteins. Crit Rev Biochem Mol Biol 32(1):1–100

    Article  CAS  Google Scholar 

  10. Sasaki H, Bothner B, Dell A, Fukuda M (1987) Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem 262(25):12059–12076

    CAS  Google Scholar 

  11. Rush RS, Derby PL, Smith DM, Merry C, Rogers G, Rohde MF, Katta V (1995) Microheterogeneity of erythropoietin carbohydrate structure. Anal Chem 67(8):1442–1452

    Article  CAS  Google Scholar 

  12. Kiss Z, Elliott S, Jedynasty K, Tesar V, Szegedi J (2010) Discovery and basic pharmacology of erythropoiesisstimulating agents (ESAs), including the hyperglycosylated ESA, darbepoetin alfa: an update of the rationale and clinical impact. Eur J Clin Pharmacol 66(4):331–340

    Article  CAS  Google Scholar 

  13. Miura Y, Komatsu N, Suda T (1990) Growth and differentiation of two human megakaryoblastic cell lines: CMK and UT-7. Prog Clin Biol Res 356:259

    CAS  Google Scholar 

  14. Komatsu N, Fujita H (1993) Induced megakaryocytic maturation of the human leukemic cell line, UT-7, results in down-modulation of erythropoietin receptor gene expression. Cancer Res 53(5):1156–1161

    CAS  Google Scholar 

  15. Mire-Sluis AR, Gaines-Das R, Thorpe R (1995) Immunoassays for detecting cytokines: what are they really measuring? J Immunol Methods 186:157–160

    Article  CAS  Google Scholar 

  16. Bird C, Wadhwa M, Thorpe R (1991) Development of immunoassays for human interleukin 3 and interleukin 4, some of which discriminate between different recombinant DNA-derived molecules. Cytokine 3:562–567

    Article  CAS  Google Scholar 

  17. Moller B, Mogensen SC, Wendelboe P, Bendtzen K, Petersen CM (1991) Bioactive and inactive forms of tumor necrosis factor- in spinal fluid from patients with meningitis. J Infect Dis 163:886–889

    Article  CAS  Google Scholar 

  18. Onyango JD, Burri C, Brun R (2000) An automated biological assay to determine levels of the trypanocidal drug melarsoprol in biological fluids. Acta Trop 74:95–100

    Article  CAS  Google Scholar 

  19. Gazzano-Santoro H, Chen A, Casto B, Chu H, Gilkerson E, Mukku V, Canova-Davis E, Kotts C (1999) Validation of a rat pheochromocytoma (PC12)-based cell survival assay for determining biological potency of recombinant human nerve growth factor. J Pharm Biomed Anal 21:945–959

    Article  CAS  Google Scholar 

  20. Canosi U, Mascia M, Gazza L, Serlupi-Crescenzi O, Donini S, Antonetti F, Galli G (1996) A highly precise reporter gene bioassay for type I interferon. J Immunol Methods 199(1):69–76

    Article  CAS  Google Scholar 

  21. Adams RL (1969) The effect of endogenous pools of thymidylate on the apparent rate of DNA synthesis. Exp Cell Res 56:55–58

    Article  CAS  Google Scholar 

  22. Khoo SK, Hurst T, Webb MJ, Dickie G, Kearsley J, Parsons PG, Mackay EV (1988) Measurement of tumor cell activity in short-term primary culture. Clinical significance in women with ovarian cancer. Cancer 61:1579–1586

    Article  CAS  Google Scholar 

  23. Westermark K, Karlsson FA, Westermark B (1983) Epidermal growth factor modulates thyroid growth and function in culture. Endocrinology 112(5):1680–1686

    Article  CAS  Google Scholar 

  24. Mosmann T (1983) Epidermal growth factor modulates thyroid growth and function in culture. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  25. Raz B, Iten M, Grether-Buhler Y, Kaminsky R, Brun R (1997) The Alamar Blue® assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop 68:139–147

    Article  CAS  Google Scholar 

  26. Crouch SPM, Kozlowski R, Slater KJ, Fletcher J (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160:81–88

    Article  CAS  Google Scholar 

  27. Metta MK, Kunaparaju RK, Tantravahi S (2016) Rapid amplification system for recombinant protein production in Chinese Hamster Ovary (CHO) Cells. Cell Mol Biol 62(2):101–106

    CAS  Google Scholar 

  28. Erythropoietin concentrate solution (2016) Electrophoresis 2.2.31, European Pharmacopeia

  29. Kreft S, Kreft M (2009) Quantification of dichromatism: a characteristic of color in transparent materials. J Opt Soc Am A 26:1576–1581

    Article  CAS  Google Scholar 

  30. Page B, Page M, Noel C (1993) A new fluorimetric assay for cytotoxicity measurements in vitro. Int J Oncol 3:473–476

    CAS  Google Scholar 

  31. Matsumoto K, Yamada Y, Takahashi M, Todoroki T, Mizoguchi K, Misaki H, Yuki H (1990) Fluorometric determination of carnitine in serum with immobilized carnitine dehydrogenase and diaphorase. J Clin Chem 36:2072–2076

    CAS  Google Scholar 

  32. Belinsky M, Jaiswal AK (1993) NAD(P)H: quinone oxidoreductase1DT-diaphorase expression in normal and tumor tissues. Cancer Metastasis Rev 12:103–117

    Article  CAS  Google Scholar 

  33. Chikuba K, Yubisui T, Shirabe K, Takeshita M (1994) Cloning and nucleotide sequence of a cDNA of the human erythrocyte NADPH-flavin reductase. Biochem Biophys Res Commun 198:1170–1176

    Article  CAS  Google Scholar 

  34. Moon TW, Mommsen TP (2005) Biochemistry and molecular biology of fishes. Environ Toxicol 6:51–56

    Google Scholar 

  35. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36(Web Server issue):W5-9

  36. Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucl Acids Res 43(W1):W389–W394

    Article  Google Scholar 

  37. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucl Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  38. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  Google Scholar 

  39. Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 47:5.6.1–32

  40. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  CAS  Google Scholar 

  41. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6(5):1509–1519

    Article  CAS  Google Scholar 

  42. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  43. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three imensional structures of proteins. Nucleic Acids Res 35(suppl 2):W407–W410

    Article  Google Scholar 

  44. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17(4):355–362

    Article  CAS  Google Scholar 

  45. Bohne-Lang A, von der Lieth CW (2005) GlyProt: in silico glycosylation of proteins. Nucleic Acids Res 33(suppl 2):W214–W219

    Article  CAS  Google Scholar 

  46. Bohne A, Lang E, von der Lieth CW (1999) SWEET- WWW-based rapid 3D construction of oligo- and polysaccharides. Bioinformatics 15(9):767–768

    Article  CAS  Google Scholar 

  47. Bohne A, Lang E, von der Lieth CW (1999) W3-SWEET: carbohydrate modeling by internet. Mol Model Annu 4(1):33–43

    Article  Google Scholar 

  48. Fukuda MN, Sasaki H, Lopez L, Fukuda M (1989) Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73:84–89

    CAS  Google Scholar 

  49. Spivak JL, Hogans BB (1989) The in vivo metabolism of recombinant human erythropoietin in the rat. Blood 73:90–99

    CAS  Google Scholar 

  50. Tsodikov OV, Record MT, Sergeev YV (2002) Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem 23(6):600–609

    Article  CAS  Google Scholar 

  51. Moore E, Bellomo R (2011) Erythropoietin (EPO) in acute kidney injury. Ann Intensive Care 1:3:53

    Google Scholar 

  52. Tanaka T, Nangaku M (2012) Recent advances and clinical application of erythropoietin and erythropoiesis-stimulating agents. Exp Cell Res 318(9):1068–1073

    Article  CAS  Google Scholar 

  53. Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, Ponting I (2004) Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol 32:1146–1155

    Article  CAS  Google Scholar 

  54. Takeuchi M, Kobata A (1991) Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1:337–346

    Article  CAS  Google Scholar 

  55. Ramos AS, Schmidt CA, Andrade SS, Fronza M, Rafferty B, Dalmora SL (2003) Biological evaluation of recombinant human erythropoietin in pharmaceutical products. Braz J Med Biol Res 36(11):1561–1569

    Article  CAS  Google Scholar 

  56. Sinclair AM (2013) Erythropoiesis stimulating agents: approaches to modulate activity. Biologics 7:161–174

    CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to Usha Biotech and GITAM University for their support in carrying out this research study. I would also like to acknowledge the Head, Department of Chemistry and the Principal, University College of Science, Osmania University for providing the facilities to carry out this bioinformatics study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Tantravahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metta, M., Malkhed, V., Tantravahi, S. et al. Development of an in vitro Bioassay for Recombinant Human Erythropoietin (rHuEPO) Based on Proliferative Stimulation of an Erythroid Cell Line and Analysis of Sialic Acid Dependent Microheterogeneity: UT-7 Cell Bioassay. Protein J 36, 112–122 (2017). https://doi.org/10.1007/s10930-017-9704-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9704-3

Keywords

Navigation