Skip to main content

Advertisement

Log in

Response to erythropoietin in pediatric patients with chronic kidney disease: insights from an in vitro bioassay

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Decreased production of erythropoietin (EPO) is a major cause of anemia associated with chronic kidney disease (CKD). Treatment with recombinant human EPO (rHuEPO) improves patients’ quality of life and survival; however, there is a marked variability in response to rHuEPO. At present, no available laboratory test is capable of evaluating responsiveness to EPO treatment. The aim of the present study was to use an in vitro bioassay to estimate the effect of uremic environment on EPO-dependent erythroid cell proliferation.

Methods

EPO-dependent human erythroleukemia cells (UT-7) were incubated with exogenous EPO (2 u/ml) and sera obtained from 60 pediatric patients (aged 1–23 years). Three groups were studied: (1) 12 children on dialysis (4 peritoneal, 8 hemodialysis); (2) 28 patients with CKD 1–5 (not on dialysis), and (3) 20 healthy children.

Results

Sera from dialysis patients inhibited UT-7 cell growth compared to the CKD group and healthy controls at 48 h (p = 0.003 and p = 0.04, respectively) and 72 h of culture (p = 0.02 and p = 0.07, respectively). In 18 patients treated with rHuEPO, a significant inverse correlation was found between the EPO resistance index and cell proliferation at 48 h (p = 0.007, r = − 0.63) and 72 h (p = 0.03, r = − 0.52).

Conclusions

Our findings support the presence of erythropoiesis inhibitory substances in uremic sera. EPO/EPO-R-dependent mechanisms may play a role in inhibiting erythropoiesis. The in vitro bioassay described herein may serve as an indicator of rHuEPO responsiveness which may encourage further investigation of underlying mechanisms of EPO resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wong H, Mylrea K, Feber J, Druker A, Filler G (2006) Prevalence of complication of children with chronic kidney disease according to KDOQI. Kidney Int 70:585–590

    Article  CAS  PubMed  Google Scholar 

  2. Soliman AT, De Sanctis V, Kalra S (2014) Anemia and growth. Indian J Endocrinol Metab 18(suppl 1):S1–S5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Collins AJ, Ma JZ, Ebben J (2000) Impact of hematocrit on morbidity and mortality. Semin Nephrol 20:345–349

    CAS  PubMed  Google Scholar 

  4. Atkinson MA, Furth SL (2011) Anemia in children with chronic kidney disease. Nat Rev Nephrol 7:635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bunn HF (2013) Erythropoietin. Cold Spring Harb Perspect Med 3:a011619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elliott J, Mishler D, Agarwal R (2009) Hyporesponsiveness to erythropoietin: causes and management. Adv Chronic Kidney Dis 16:94–100

    Article  PubMed  Google Scholar 

  7. Bamgbola OF, Kaskel FJ, Coco M (2009) Analyses of age, gender and other risk factors of erythropoietin resistance in pediatric and adult dialysis cohorts. Pediatr Nephrol 24:571–579

    Article  PubMed  Google Scholar 

  8. Priyadarshi A, Shaporo JL (2006) Erythropoietin resistance in the treatment of anemia of chronic renal failure. Semin Dial 19:273–278

    Article  PubMed  Google Scholar 

  9. Alves MT, Vilaca SS, Carvalho MD, Fernandes AP, Dusse LM, Gomes KB (2015) Resistance of dialyzed patients to erythropoietin. Rev Bras Hematol Hemoter 37:190–197

    Article  PubMed  PubMed Central  Google Scholar 

  10. Costa E, Lima M, Alves JM, Rocha S, Rocha-Pereira P, Castro E, Miranda V, do SF, Loureiro A, Quintanilha A, Belo L, Santos-Silva A (2008) Inflammation, T cell phenotype, and inflammatory cytokines in chronic kidney disease patients under hemodialysis and its relationship to resistance to recombinant human erythropoietin therapy. J Clin Immunol 28:268–275

    Article  CAS  PubMed  Google Scholar 

  11. Cabrita ALA, Pinho A, Malho A, Morgado E, Faisca M, Carrasqueira H, Silva AP, Neves PL (2011) Risk factors for high erythropoiesis stimulating agents resistance index in pre-dialysis chronic disease patients, stage 4 and 5. Int Urol Nephrol 43:835–840

    Article  CAS  Google Scholar 

  12. Akagi S, Ichikawa H, Okada T, Sarai A, Sugimoto T, Morimoto H, Kihara T, Yano A, Nakao K, Nagake Y, Wada J, Makino H (2004) The critical role of SRC homology domain 2-containing tyrosine phosphatase-1 in recombinant human erythropoietin hyporesponsiveness anemia in chronic hemodialysis patients. J Am Soc Nephrol 15:3215–3224

    Article  PubMed  Google Scholar 

  13. Komatsu N, Yamamoto M, Fujita H, Miwa A, Hatake K, Endo T, Okano H, Katsube T, Fukumaki Y, Sassa S, Miura Y (1993) Establishment and characterization of an erythropoietin dependent subline, UT-7/EPO derived from human leukemia cell line, UT-7. Blood 82:456–464

    CAS  PubMed  Google Scholar 

  14. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, Tamura MK, Feldman HI (2014) KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis 63:713–735

    Article  PubMed  Google Scholar 

  15. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chait Y, Kalim S, Horowitz J, Hollot CV, Ankers ED, Germain MJ, Thadhani RI (2016) The greatly misunderstood erythropoietin resistance index and the case for a new responsiveness measure. Hemodial Int 20:392–398

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eleftheriadis T, Liakopoulos V, Antoniadi G, Stefanidis I (2010) Which is the best way for estimating transferrin saturation? Ren Fail 32:1022–1023

    Article  PubMed  Google Scholar 

  18. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334

    CAS  PubMed  Google Scholar 

  19. Fraser JK, Lin FK, Berridge MV (1988) Expression and modulation of specific, high affinity binding sites for erythropoietin on the human erythroleukemic cell line K562. Blood 71:104–109

    CAS  PubMed  Google Scholar 

  20. Kalantar-Zadeh K, Lee GH, Miller JE, Streija E, Jing J, Tobertson JA, Kovesdy CP (2009) Predictors of hyporesponsiveness to erythropoiesis-stimulating agents in hemodialysis patients. Am J Kidney Dis 53:823–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mallick S, Rafiroiu A, Kanthety R, Iqbal S, Malik R, Rahman M (2012) Factors predicting erythropoietin resistance among maintenance hemodialysis patients. Blood Purif 33:238–244

    Article  CAS  PubMed  Google Scholar 

  22. Bamgbola OF, Kaskel F (2005) Role of folate deficiency on erythropoietin resistance in pediatric and adolescent patients on chronic dialysis. Pediatr Nephrol 20:1622–1629

    Article  PubMed  Google Scholar 

  23. Green A (2011) Indicators for assessing folate and vitamin B12 status and for monitoring the efficacy of intervention strategies. Am J Clin Nutr 94(suppl):666S–672S

    Article  PubMed  PubMed Central  Google Scholar 

  24. Khankin EV, Mutter WP, Tamez H, Yuan HT, Karumanchi SA, Thadhani R (2010) Soluble erythropoietin receptor contributes to erythropoietin resistance in end stage renal disease. PLoS One 5:e9246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inrig JK, Bryskin SK, Patel UD, Arcasory M, Szczech LA (2011) Association between high dose erythropoietin-stimulating agents, inflammatory biomarkers, and soluble erythropoietin receptors. BMC Nephrol 12:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bamgola OF (2011) Patterns of resistance to erythropoietin-stimulating agents in chronic kidney disease. Kidney Int 80:464–474

    Article  CAS  Google Scholar 

  27. Gobert S, Duprez V, Lacombe C, Gisselbrecht S, Mayeux P (1995) The signal transduction pathway of erythropoietin involves three forms of mitogen-activated protein (MAP) kinase in UT7 erythroleukemia cells. Eur J Biochem 234:75–83

    Article  CAS  PubMed  Google Scholar 

  28. Bae MN, Kim SH, Kim YO, Jin DC, Song HC, Choi EJ, Kim YL, Kim YS, Kang SW, Kim NH, Yang CW, Kim YK (2015) Association of erythropoietin-stimulating agent responsiveness with mortality in hemodialysis and peritoneal dialysis patients. PLoS One 10:1–13

    Google Scholar 

  29. Chung S, Song HC, Shin SJ, Ihm SH, Park CS, Kim HY, Yang CW, Kim YS, Choi EJ, Kim YK (2012) Relationship between erythropoietin resistance index and left ventricular mass and function and cardiovascular events in patients on chronic hemodialysis. Hemodial Int 16:181–187

    Article  PubMed  Google Scholar 

  30. Powell DR, Liu F, Baker BK, Hitz RL, Kal A, Suwanichkul A, Durhan SK (2000) Effect of chronic renal failure and growth hormone therapy on the insulin-like growth factors and their binding proteins. Pediatr Nephrol 14:579–583

    Article  CAS  PubMed  Google Scholar 

  31. Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CA, Lash JP, Hsu CY, Leonard MB, Wolf M (2001) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–1278

    Article  CAS  Google Scholar 

  32. Coe LM, Madathil SV, Casu C, Lanske B, Rivella S, Sitara D (2014) FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis. J Biol Chem 289:9795–9810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsai MH, Leu JG, Fang YW, Liou HH (2016) High fibroblast growth factor 23 levels associated with low hemoglobin levels in patients with chronic kidney disease stages 3 and 4. Medicine 95:1–9

    Article  Google Scholar 

  34. Kimachi M, Fukuma S, Yamazaki S, Yamamoto Y, Akizawa T, Akiba T, Saito A, Fukuhara S (2015) Minor elevation in C-reactive protein levels predicts incidence of erythropoiesis-stimulating agent hyporesponsiveness among hemodialysis patients. Nephron 131:123–130

    Article  CAS  PubMed  Google Scholar 

  35. Macdougall IC, Cooper AC (2002) Erythropoietin resistance: the role of inflammation and pro-inflammatory cytokines. Nephrol Dial Transplant 17(suppl 11):39–43

    Article  CAS  PubMed  Google Scholar 

  36. Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A (2000) CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK 2. J Biol Chem 275:29338–29347

    Article  CAS  PubMed  Google Scholar 

  37. Chen MP, Chen CW, Chen JS, Mao HC, Chou CL (2016) Circulating growth arrest specific protein 6 levels are associated with erythropoietin resistance in hemodialysis patients. SpringerPlus 5:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  CAS  PubMed  Google Scholar 

  39. Zaritsky J, Young B, Wang HJ, Westerman M, Olbina G, Nemeth E, Ganz T, Rivera S, Nissenson AR, Salusky IB (2009) Hepcidin-a potential novel biomarker for iron status in chronic kidney disease. Clin J Am Soc Nephrol 4:1051–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Phyllis Curchack Kornspan for her editorial services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irit Krause.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavish, R., Watad, S., Ben-Califa, N. et al. Response to erythropoietin in pediatric patients with chronic kidney disease: insights from an in vitro bioassay. Pediatr Nephrol 33, 2123–2129 (2018). https://doi.org/10.1007/s00467-018-4016-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-018-4016-1

Keywords

Navigation