Skip to main content
Log in

Forced Unfolding of Apocytochrome b 5 by Steered Molecular Dynamics Simulation

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Apocytochrome b 5 (apocyt b 5), a small b-type cytochrome with heme prosthetic group removal, has been subjected to steered molecular dynamics (SMD) simulations for investigating the consequences of mechanical force-induced unfolding. Both constant velocity (0.5 and 1.0 Å/ps) and constant force (500, 750 and 1000 pN) stretching have been employed to model forced unfolding of apocyt b 5. The results of SMD simulations elucidate that apocyt b 5 is protected against external stress mainly through the interstrand hydrogen bonding between its β1–β2 and β2–β3 strands, highlighting the importance of hydrophobic core 2 in stabilization of apocyt b 5. The existence of intermediate states manifested by current simulations in the forced unfolding pathway of apocyt b 5 is different from the observations in pervious thermal or chemical unfolding studies in the absence of force. The present study could thus provide insights into the relationship between the two cooperative functional modules of apocyt b 5 and also guide the rational molecular design of heme proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

cyt b 5 :

Cytochrome b 5

apocyt b 5 :

Apocytochrome b 5

holocyt b 5 :

Holocytochrome b 5

cyt c :

Cytochrome c

AFM:

Atomic force microscopy

NMR:

Nuclear magnetic resonance

SMD:

Steered molecular dynamics

cv-SMD:

Constant velocity SMD

cf-SMD:

Constant force SMD

RMSD:

Root mean square deviation

References

  1. Moore GR, Pettigrew GW (1990) Cytochrome c: evolutionary, structural and physicochemical aspects. Springer-Verlag, Berlin

    Google Scholar 

  2. Mathews FS (1985) Prog Biophys Mol Biol 45:1–56

    Article  CAS  Google Scholar 

  3. Ozols J, Strittmatter P (1964) J Biol Chem 239:1018–1023

    CAS  Google Scholar 

  4. Falzone CJ, Mayer MR, Whiteman EL, Moore CD, Lecomte JTJ (1996) Biochemistry 35:6519–6526

    Article  CAS  Google Scholar 

  5. Wang W-H, Wang Y-H, Lu J-X, Xie Y, Huang Z-X (2002) Chem Lett:674–675

  6. Wang W-H, Lu J-X, Yao P, Xie Y, Huang Z-X (2003) Protein Eng 16:1047–1054

    Article  CAS  Google Scholar 

  7. Lin Y-W, Wang W-H, Zhang Q, Lu H-J, Yang P-Y, Xie Y, Huang Z-X, Wu H-M (2005) Chem Bio Chem 6:1356–1359

    CAS  Google Scholar 

  8. Daltrop O, Allen JWA, Willis AC, Ferguson SJ (2002) Proc Natl Acad Sci USA 99:7872–7876

    Article  CAS  Google Scholar 

  9. Tomlinson EJ, Ferguson SJ (2004) Proc Natl Acad Sci USA 97:5156–5160

    Article  Google Scholar 

  10. Stevens JM, Daltrop O, Allen JWA, Ferguson SJ (2004) Acc Chem Res 37:999–1007

    Article  CAS  Google Scholar 

  11. Moore CD, Lecomte JTJ (1993) Biochemistry 32:199–207

    Article  CAS  Google Scholar 

  12. Manyusa S, Whitford D (1999) Biochemistry 38:9533–9540

    Article  CAS  Google Scholar 

  13. Pfeil W (1993) Protein Sci 2:1497–1501

    Article  CAS  Google Scholar 

  14. Cowley AB, Rivera M, Benson DR (2004) Protein Sci 13:2316–2329

    Article  CAS  Google Scholar 

  15. Cowley AB, Sun N, Rivera M, Benson DR (2005) Biochemistry 44:14606–14615

    Article  CAS  Google Scholar 

  16. Wang L, Sun N, Terzyan S, Zhang X, Benson DR (2006) Biochemistry 45:13750–13759

    Article  CAS  Google Scholar 

  17. Oberhauser AF, Marszalek PE, Erickson H, Fernandez J (1998) Nature 393:181–185

    Article  CAS  Google Scholar 

  18. Reif M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Science 276:1109–1112

    Article  Google Scholar 

  19. Kellermayer M, Smith S, Granzier H, Bustamante C (1997) Science 276:1112–1116

    Article  CAS  Google Scholar 

  20. Craig D, Krammer A, Schulten K, Vogel V (2001) Proc Natl Acad Sci USA 98:5590–5595

    Article  CAS  Google Scholar 

  21. Sotomayor M, Schulten K (2007) Science 316:1144–1148

    Article  CAS  Google Scholar 

  22. Brünger, AT (1992) X-PLOR, version 3.1

  23. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  24. Wang Z-H, Lin Y-W, Rosell FI, Ni F-Y, Lu H-J, Yang P-Y, Tan X-S, Li X-Y, Huang Z-X, Mauk AG (2007) Chembiochem 7:607–609

    Article  CAS  Google Scholar 

  25. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  26. Gao M, Wilmanns M, Schulten K (2002) Biophys J 83:3435–3445

    CAS  Google Scholar 

  27. Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comp Phys 151:283–312

    Article  Google Scholar 

  28. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher IWE, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  29. Lu H, Schulten K (1999) Proteins Struct Funct Genet 35:453–463

    Article  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  31. Storch EM, Daggett V (1996) Biochemistry 35:11596–11604

    Article  CAS  Google Scholar 

  32. Storch EM, Daggett V (1995) Biochemistry 34:9682–9693

    Article  CAS  Google Scholar 

  33. Paci E, Karplus M (2000) Proc Natl Acad Sci USA 97:6521–6526

    Article  CAS  Google Scholar 

  34. Constans AJ, Mayer MR, Sukits SF, Lecomte JTJ (1998) Protein Sci 7:1983–1993

    CAS  Google Scholar 

  35. Lin Y-W, Zhao D-X, Wang Z-H, Huang Z-X (2006) Protein Expr Purif 45:352–358

    Article  CAS  Google Scholar 

  36. Ng SP, Rounsevell RW, Steward A, Geierhaas CD, Williams PM, Paci E, Clarke J (2005) J Mol Biol 350:776–789

    Article  CAS  Google Scholar 

  37. Forman JR, Clarke J (2007) Curr Opin Struct Biol 17:58–66

    Article  CAS  Google Scholar 

  38. Prakash S, Matouschek A (2004) Trends Biochem Sci 29:593–600

    Article  CAS  Google Scholar 

  39. Lederer F (1994) Biochimie 76:674–692

    Article  CAS  Google Scholar 

  40. Barker PD, Ferrer JC, Mylrajan M, Loehr TM, Feng R, Konishi Y, Funk WD, MacGillivray RTA, Mauk AG (1993) Proc Natl Acad Sci USA 90:6542–6546

    Article  CAS  Google Scholar 

  41. Cheng Q, Benson DR, Rivera M, Kuczera K (2006) Biopolymers 83:297–312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Wu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YW., Wang, ZH., Ni, FY. et al. Forced Unfolding of Apocytochrome b 5 by Steered Molecular Dynamics Simulation. Protein J 27, 197–203 (2008). https://doi.org/10.1007/s10930-007-9125-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-007-9125-9

Keywords

Navigation