Skip to main content

Molecular Dynamics Simulation to Study Thermal Unfolding in Proteins

  • Chapter
  • First Online:
Protein Folding Dynamics and Stability

Abstract

The proper folding of a protein is essential for its biological functions. Thermal denaturation of protein structure has been used as an essential tool to understand the unfolding mechanism and measure thermodynamic stability. New technologies have made it feasible to heat proteins using femtosecond laser technology and nanoparticle-targeting methods locally. It is crucial to comprehend how quickly proteins can unfold or lose their function at high temperatures. Protein folding and unfolding have been widely modelled using molecular dynamics (MD) simulations. MD simulations provide information about protein folding that is otherwise impractical through experimental approaches. Techniques like targeted molecular dynamics (TMD) simulations and acid-thermal denaturation correspond to varying degrees of success with experimental observations. These simulations, utilized in tandem with experiments, provide crucial information on the protein folding mechanism. Because of recent computer hardware and software improvements, it is now possible to include a broad range of temperature factors in thermal denaturation studies. In this chapter, we dwell on these details and discuss the thermal unfolding of proteins and their applications. Various computational methods and tools and their uses in protein folding/unfolding studies are described. We also cover an overview of limitations, significant contributions, and recent advancements in MD simulation approaches to study protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Whisstock, A.M. Lesk, Prediction of protein function from protein sequence and structure. Q. Rev. Biophys. 36(3), 307–340 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. D.B. Singh, T. Tripathi, Frontiers in Protein Structure, Function, and Dynamics (Springer Nature, Singapore, 2020)

    Book  Google Scholar 

  3. P. Davis, S. Williams, Protein modification by thermal processing. Allergy 53, 102–105 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. R. Jaenicke, Protein folding: local structures, domains, subunits, and assemblies. Biochemistry 30(13), 3147–3161 (1991)

    Article  CAS  PubMed  Google Scholar 

  5. H. Wu, Studies on denaturation of proteins XIII. A theory of denaturation. Adv. Protein Chem. 46, 6–26 (1995)

    Article  CAS  PubMed  Google Scholar 

  6. V.N. Uversky, N.V. Narizhneva, S.O. Kirschstein, S. Winter, G. Löber, Conformational transitions provoked by organic solvents in β-lactoglobulin: can a molten globule like intermediate be induced by the decrease in dielectric constant? Fold. Des. 2(3), 163–172 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. C.M. Dobson, M. Karplus, The fundamentals of protein folding: bringing together theory and experiment. Curr. Opin. Struct. Biol. 9(1), 92–101 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. D. Thirumalai, E.P. O’Brien, G. Morrison, C. Hyeon, Theoretical perspectives on protein folding. Annu. Rev. Biophys. 39, 159–183 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. P. Saudagar, T. Tripathi, Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics, 1st edn. (Academic Press, San Diego, 2023)

    Google Scholar 

  10. T. Tripathi, V.K. Dubey, Advances in Protein Molecular and Structural Biology Methods, 1st edn. (Academic Press, Cambridge, MA, 2022)

    Google Scholar 

  11. S.E. Radford, Protein folding: progress made and promises ahead. Trends Biochem. Sci. 25(12), 611–618 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. J. Yon, Protein folding: a perspective for biology, medicine and biotechnology. Braz. J. Med. Biol. Res. 34, 419–435 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. A. Gershenson, S. Gosavi, P. Faccioli, P.L. Wintrode, Successes and challenges in simulating the folding of large proteins. J. Biol. Chem. 295(1), 15–33 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. R. Lazim, D. Suh, S. Choi, Advances in molecular dynamics simulations and enhanced sampling methods for the study of protein systems. Int. J. Mol. Sci. 21(17), 6339 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D. Bhowmik, S. Gao, M.T. Young, A. Ramanathan, Deep clustering of protein folding simulations. BMC Bioinformatics 19(18), 47–58 (2018)

    Google Scholar 

  16. A.R. Fersht, V. Daggett, Protein folding and unfolding at atomic resolution. Cell 108(4), 573–582 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. V. Daggett, Protein folding-simulation. Chem. Rev. 106(5), 1898–1916 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. A. Prakash, D. Idrees, M.A. Haque, A. Islam, F. Ahmad, M.I. Hassan, GdmCl-induced unfolding studies of human carbonic anhydrase IX: a combined spectroscopic and MD simulation approach. J. Biomol. Struct. Dyn. 35(6), 1295–1306 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. H. Naz, M. Shahbaaz, M.A. Haque, K. Bisetty, A. Islam, F. Ahmad, M.I. Hassan, Urea-induced denaturation of human calcium/calmodulin-dependent protein kinase IV: a combined spectroscopic and MD simulation studies. J. Biomol. Struct. Dyn. 35(3), 463–475 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. D. Idrees, S. Rahman, M. Shahbaaz, M.A. Haque, A. Islam, F. Ahmad, M.I. Hassan, Estimation of thermodynamic stability of human carbonic anhydrase IX from urea-induced denaturation and MD simulation studies. Int. J. Biol. Macromol. 105, 183–189 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. D. Idrees, A. Prakash, M.A. Haque, A. Islam, F. Ahmad, M.I. Hassan, Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea. J. Biomol. Struct. Dyn. 34(9), 1987–1997 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. A.A.T. Naqvi, T. Mohammad, G.M. Hasan, M.I. Hassan, Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem. 18(20), 1755–1768 (2018)

    Article  PubMed  Google Scholar 

  23. A.A.T. Naqvi, U. Kiran, M.Z. Abdin, M.I. Hassan, Bioinformatic tools to understand structure and function of plant proteins, in Transgenic Technology Based Value Addition in Plant Biotechnology, (Academic Press, San Diego, 2020), pp. 69–93

    Chapter  Google Scholar 

  24. R. Day, V. Daggett, All-atom simulations of protein folding and unfolding. Adv. Protein Chem. 66, 373–403 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. R. Day, V. Daggett, Ensemble versus single-molecule protein unfolding. Proc. Natl. Acad. Sci. 102(38), 13445–13450 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. F.I. Khan, P. Gupta, S. Roy, N. Azum, K.A. Alamry, A.M. Asiri, D. Lai, M.I. Hassan, Mechanistic insights into the urea-induced denaturation of human sphingosine kinase 1. Int. J. Biol. Macromol. 161, 1496–1505 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. F.I. Khan, K. Bisetty, S. Singh, K. Permaul, M.I. Hassan, Chitinase from thermomyces lanuginosus SSBP and its biotechnological applications. Extremophiles 19(6), 1055–1066 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. F.I. Khan, K. Bisetty, K.R. Gu, S. Singh, K. Permaul, M.I. Hassan, D.Q. Wei, Molecular dynamics simulation of chitinase I from thermomyces lanuginosus SSBP to ensure optimal activity. Mol. Simul. 43(7), 480–490 (2017)

    Article  CAS  Google Scholar 

  29. F.I. Khan, S. Ali, W. Chen, F. Anjum, A. Shafie, M.I. Hassan, D. Lai, High-resolution MD simulation studies to get mechanistic insights into the urea-induced denaturation of human sphingosine kinase 1. Curr. Top. Med. Chem. 21(31), 2839–2850 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. P.G. Wolynes, Evolution, energy landscapes and the paradoxes of protein folding. Biochimie 119, 218–230 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. X. Periole, A.E. Mark, Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent. J. Chem. Phys. 126(1), 01B601 (2007)

    Article  Google Scholar 

  32. H. Lei, Y. Duan, Improved sampling methods for molecular simulation. Curr. Opin. Struct. Biol. 17(2), 187–191 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. K. Ostermeir, M. Zacharias, Advanced replica-exchange sampling to study the flexibility and plasticity of peptides and proteins. Biochim. Biophys. Acta 1834(5), 847–853 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. Y.M. Rhee, V.S. Pande, Multiplexed-replica exchange molecular dynamics method for protein folding simulation. Biophys. J. 84(2), 775–786 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Zhou, Replica exchange molecular dynamics method for protein folding simulation, in Protein Folding Protocols, (Springer, Cham, 2007), pp. 205–223

    Google Scholar 

  36. R. Shukla, T. Tripathi, Molecular dynamics simulation of protein and protein-ligand complexes, in Computer-Aided Drug Design, ed. by D.B. Singh, (Springer Nature, Singapore, 2020), pp. 133–161

    Chapter  Google Scholar 

  37. R. Shukla, T. Tripathi, Molecular dynamics simulation in drug discovery: opportunities and challenges, in Innovations and Implementations of Drug Discovery Strategies in Rational Drug Design, ed. by S.K. Singh, (Springer Nature, Singapore, 2021), pp. 295–316

    Google Scholar 

  38. S. Robic, Mathematics, thermodynamics, and modeling to address ten common misconceptions about protein structure, folding, and stability. CBE Life Sci. Educ. 9(3), 189–195 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  39. K. Anwer, R. Sonani, D. Madamwar, P. Singh, F. Khan, K. Bisetty, F. Ahmad, M.I. Hassan, Role of N-terminal residues on folding and stability of C-phycoerythrin: simulation and urea-induced denaturation studies. J. Biomol. Struct. Dyn. 33(1), 121–133 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. K. Anwer, S. Rahman, R.R. Sonani, F.I. Khan, A. Islam, D. Madamwar, F. Ahmad, M.I. Hassan, Probing pH sensitivity of αC-phycoerythrin and its natural truncant: a comparative study. Int. J. Biol. Macromol. 86, 18–27 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. K. Anwer, A. Parmar, S. Rahman, A. Kaushal, D. Madamwar, A. Islam, M.I. Hassan, F. Ahmad, Folding and stability studies on C-PE and its natural N-terminal truncant. Arch. Biochem. Biophys. 545, 9–21 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. G.N. Somero, Proteins and temperature. Annu. Rev. Physiol. 57(1), 43–68 (1995)

    Article  CAS  PubMed  Google Scholar 

  43. V.Y. Alexandrov, Conformational flexibility of proteins, their resistance to proteinases and temperature conditions of life. Biosystems 3(1), 9–19 (1969)

    Article  CAS  Google Scholar 

  44. T. Tripathi, Calculation of thermodynamic parameters of protein unfolding using far-ultraviolet circular dichroism. J. Protein. Proteomics 4(2), 85–91 (2013)

    Google Scholar 

  45. R. Jaenicke, Protein structure and function at low temperatures. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326(1237), 535–553 (1990)

    Article  CAS  PubMed  Google Scholar 

  46. S. Bondos, K. Matthews, Protein Folding (McGraw-Hill, New York, 2021)

    Google Scholar 

  47. H.J. Dyson, P.E. Wright, Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6(3), 197–208 (2005)

    Article  CAS  PubMed  Google Scholar 

  48. A.G. Rocco, L. Mollica, P. Ricchiuto, A.M. Baptista, E. Gianazza, I. Eberini, Characterization of the protein unfolding processes induced by urea and temperature. Biophys. J. 94(6), 2241–2251 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. A. Arsiccio, J.E. Shea, Pressure unfolding of proteins: new insights into the role of bound water. J. Phys. Chem. B 125(30), 8431–8442 (2021)

    Article  CAS  PubMed  Google Scholar 

  50. L.J. Lapidus, Protein unfolding mechanisms and their effects on folding experiments. F1000Res 6, 1723 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  51. R. Day, B.J. Bennion, S. Ham, V. Daggett, Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J. Mol. Biol. 322(1), 189–203 (2002)

    Article  CAS  PubMed  Google Scholar 

  52. A. Caflisch, M. Karplus, Molecular dynamics simulation of protein denaturation: solvation of the hydrophobic cores and secondary structure of barnase. Proc. Natl. Acad. Sci. 91(5), 1746–1750 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)

    Article  CAS  PubMed  Google Scholar 

  54. M. Pechlaner, W.F. van Gunsteren, N. Hansen, L.J. Smith, Molecular dynamics simulation or structure refinement of proteins: are solvent molecules required? A case study using hen lysozyme. Eur. Biophys. J. 51(3), 265–282 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. K. Lindorff-Larsen, P. Maragakis, S. Piana, M.P. Eastwood, R.O. Dror, D.E. Shaw, Systematic validation of protein force fields against experimental data. PLoS One 7(2), e32131 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. V. Daggett, A. Fersht, The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 4(6), 497–502 (2003)

    Article  CAS  PubMed  Google Scholar 

  57. A. Sonkar, D.L. Lyngdoh, R. Shukla, H. Shukla, T. Tripathi, S. Ahmed, Point mutation A394E in the central intrinsic disordered region of Rna14 leads to chromosomal instability in fission yeast. Int. J. Biol. Macromol. 119, 785–791 (2018)

    Article  CAS  PubMed  Google Scholar 

  58. J. Kalita, R. Shukla, T. Tripathi, Structural basis of urea-induced unfolding of Fasciola gigantica glutathione S-transferase. J. Cell. Physiol. 234(4), 4491–4503 (2019)

    Article  CAS  PubMed  Google Scholar 

  59. P.B. Chetri, R. Shukla, T. Tripathi, Identification and characterization of cytosolic malate dehydrogenase from the liver fluke Fasciola gigantica. Sci. Rep. 10(1), 13372 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. U. Mayor, C.M. Johnson, V. Daggett, A.R. Fersht, Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. 97(25), 13518–13522 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. U. Mayor, N.R. Guydosh, C.M. Johnson, J.G. Grossmann, S. Sato, G.S. Jas, S. Freund, D.O. Alonso, V. Daggett, A.R. Fersht, The complete folding pathway of a protein from nanoseconds to microseconds. Nature 421(6925), 863–867 (2003)

    Article  CAS  PubMed  Google Scholar 

  62. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  CAS  Google Scholar 

  63. J.E. Basconi, M.R. Shirts, Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J. Chem. Theory Comput. 9(7), 2887–2899 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. M.R. Shirts, Simple quantitative tests to validate sampling from thermodynamic ensembles. J. Chem. Theory Comput. 9(2), 909–926 (2013)

    Article  CAS  PubMed  Google Scholar 

  65. H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980)

    Article  CAS  Google Scholar 

  66. E.A. Koopman, C.P. Lowe, Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J. Chem. Phys. 124(20), 204103 (2006)

    Article  CAS  PubMed  Google Scholar 

  67. G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007)

    Article  PubMed  Google Scholar 

  68. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    Article  Google Scholar 

  69. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 31(3), 1695–1697 (1985)

    Article  CAS  PubMed  Google Scholar 

  70. M.L.K. Glenn, J. Martyna, Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992)

    Article  Google Scholar 

  71. S. Roy, T. Mohammad, P. Gupta, R. Dahiya, S. Parveen, S. Luqman, G.M. Hasan, M.I. Hassan, Discovery of harmaline as a potent inhibitor of sphingosine kinase-1: a chemopreventive role in lung cancer. ACS Omega 5(34), 21550–21560 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. F. Naz, F.I. Khan, T. Mohammad, P. Khan, S. Manzoor, G.M. Hasan, K.A. Lobb, S. Luqman, A. Islam, F. Ahmad, M.I. Hassan, Investigation of molecular mechanism of recognition between citral and MARK4: a newer therapeutic approach to attenuate cancer cell progression. Int. J. Biol. Macromol. 107(Pt B), 2580–2589 (2018)

    Article  CAS  PubMed  Google Scholar 

  73. T. Mohammad, S. Siddiqui, A. Shamsi, M.F. Alajmi, A. Hussain, A. Islam, F. Ahmad, M.I. Hassan, Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: combined molecular docking and simulation studies. Molecules 25(4), 823 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. T. Mohammad, M. Amir, K. Prasad, S. Batra, V. Kumar, A. Hussain, M.T. Rehman, M.F. AlAjmi, M.I. Hassan, Impact of amino acid substitution in the kinase domain of Bruton tyrosine kinase and its association with X-linked agammaglobulinemia. Int. J. Biol. Macromol. 164, 2399–2408 (2020)

    Article  CAS  PubMed  Google Scholar 

  75. S. Fatima, T. Mohammad, D.S. Jairajpuri, M.T. Rehman, A. Hussain, M. Samim, F.J. Ahmad, M.F. Alajmi, M.I. Hassan, Identification and evaluation of glutathione conjugate gamma-l-glutamyl-l-cysteine for improved drug delivery to the brain. J. Biomol. Struct. Dyn. 38(12), 3610–3620 (2020)

    Article  CAS  PubMed  Google Scholar 

  76. V.N. Maiorov, G.M. Crippen, Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J. Mol. Biol. 235(2), 625–634 (1994)

    Article  CAS  PubMed  Google Scholar 

  77. A. Bagaria, V. Jaravine, Y.J. Huang, G.T. Montelione, P. Güntert, Protein structure validation by generalized linear model root-mean-square deviation prediction. Protein Sci. 21(2), 229–238 (2012)

    Article  CAS  PubMed  Google Scholar 

  78. M. Purmonen, J. Valjakka, K. Takkinen, T. Laitinen, J. Rouvinen, Molecular dynamics studies on the thermostability of family 11 xylanases. Protein Eng. Des. Sel. 20(11), 551–559 (2007)

    Article  CAS  PubMed  Google Scholar 

  79. S. Fenwick, S.K. Vanga, A. DiNardo, J. Wang, V. Raghavan, A. Singh, Computational evaluation of the effect of processing on the trypsin and alpha-amylase inhibitor from Ragi (Eleusine coracana) seed. Eng. Rep. 1(4), e12064 (2019)

    CAS  Google Scholar 

  80. K. Kobayashi, M.U. Salam, Comparing simulated and measured values using mean squared deviation and its components. Agron. J. 92(2), 345–352 (2000)

    Article  Google Scholar 

  81. A. Cooper, Thermodynamic fluctuations in protein molecules. Proc. Natl. Acad. Sci. 73(8), 2740–2741 (1976)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. S.L. Rath, M. Tripathy, N. Mandal, How does temperature affect the dynamics of SARS-CoV-2 M proteins? Insights from molecular dynamics simulations. J. Membr. Biol. 255, 341–356 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. I. Sarkar, A. Sen, In silico screening predicts common cold drug dextromethorphan along with prednisolone and dexamethasone can be effective against novel coronavirus disease (COVID-19). J. Biomol. Struct. Dyn. 40(8), 3706–3710 (2022)

    Article  CAS  PubMed  Google Scholar 

  84. A. Kuzmanic, B. Zagrovic, Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys. J. 98(5), 861–871 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. N.N. Cob-Calan, L.A. Chi-Uluac, F. Ortiz-Chi, D. Cerqueda-García, G. Navarrete-Vázquez, E. Ruiz-Sánchez, E. Hernández-Núñez, Molecular docking and dynamics simulation of protein β-tubulin and antifungal cyclic lipopeptides. Molecules 24(18), 3387 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. J.A. Ippolito, R.S. Alexander, D.W. Christianson, Hydrogen bond stereochemistry in protein structure and function. J. Mol. Biol. 215(3), 457–471 (1990)

    Article  CAS  PubMed  Google Scholar 

  87. W.B. Cardoso, S.A. Mendanha, Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors. J. Mol. Struct. 1225, 129143 (2021)

    Article  CAS  PubMed  Google Scholar 

  88. M.S. Weiss, M. Brandl, J. Sühnel, D. Pal, R. Hilgenfeld, More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci. 26(9), 521–523 (2001)

    Article  CAS  PubMed  Google Scholar 

  89. Z. Bikadi, L. Demko, E. Hazai, Functional and structural characterization of a protein based on analysis of its hydrogen bonding network by hydrogen bonding plot. Arch. Biochem. Biophys. 461(2), 225–234 (2007)

    Article  CAS  PubMed  Google Scholar 

  90. I. Habib, S. Khan, T. Mohammad, A. Hussain, M.F. Alajmi, T. Rehman, F. Anjum, M.I. Hassan, Impact of non-synonymous mutations on the structure and function of telomeric repeat binding factor 1. J. Biomol. Struct. Dyn. 40(19), 9053–9066 (2022)

    Article  CAS  PubMed  Google Scholar 

  91. P. Gupta, T. Mohammad, P. Khan, M.F. Alajmi, A. Hussain, M.T. Rehman, M.I. Hassan, Evaluation of ellagic acid as an inhibitor of sphingosine kinase 1: a targeted approach towards anticancer therapy. Biomed. Pharmacother. 118(109245), 25 (2019)

    Google Scholar 

  92. P. Gupta, T. Mohammad, R. Dahiya, S. Roy, O.M.A. Noman, M.F. Alajmi, A. Hussain, M.I. Hassan, Evaluation of binding and inhibition mechanism of dietary phytochemicals with sphingosine kinase 1: towards targeted anticancer therapy. Sci. Rep. 9(1), 019–55199 (2019)

    Article  CAS  Google Scholar 

  93. M. Amir, T. Mohammad, V. Kumar, M.F. Alajmi, M.T. Rehman, A. Hussain, P. Alam, R. Dohare, A. Islam, F. Ahmad, M.I. Hassan, Structural analysis and conformational dynamics of STN1 gene mutations involved in coat plus syndrome. Front. Mol. Biosci. 6, 41 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. M.F. AlAjmi, S. Khan, A. Choudhury, T. Mohammad, S. Noor, A. Hussain, W. Lu, M.S. Eapen, V. Chimankar, P.M. Hansbro, S.S. Sohal, A.M. Elasbali, M.I. Hassan, Impact of deleterious mutations on structure, function and stability of serum/glucocorticoid regulated kinase 1: a gene to diseases correlation. Front. Mol. Biosci. 8, 780284 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. M. Adnan, S. Koli, T. Mohammad, A.J. Siddiqui, M. Patel, N. Alshammari, F. Bardakci, A.M. Elasbali, M.I. Hassan, Searching for novel anaplastic lymphoma kinase inhibitors: structure-guided screening of natural compounds for a tyrosine kinase therapeutic target in cancers. OMICS 26(8), 461–470 (2022)

    Article  CAS  PubMed  Google Scholar 

  96. W. Li, J. Ma, S. Wu, J. Zhang, J. Cheng, The effect of hydrogen bond on the thermal and mechanical properties of furan epoxy resins: molecular dynamics simulation study. Polym. Test. 101, 107275 (2021)

    Article  CAS  Google Scholar 

  97. Y. Gao, Y. Mei, J. Zhang, Treatment of hydrogen bonds in protein simulations, in Advanced Materials for Renewable Hydrogen Production, Storage and Utilization, (InTech, London, 2015), pp. 121–136

    Google Scholar 

  98. D. Pantoja-Uceda, M.T. Pastor, J. Salgado, A. Pineda-Lucena, E. Pérez-Payá, Design of a bivalent peptide with two independent elements of secondary structure able to fold autonomously. J. Pept. Sci. 14(7), 845–854 (2008)

    Article  CAS  PubMed  Google Scholar 

  99. S. Zhang, N. Yuan, W. Li, C. Wang, F. Li, J. Xu, T. Suo, A close look at the conformational transitions of a helical polymer in its response to environmental stimuli. AIP Adv. 11(8), 085107 (2021)

    Article  CAS  Google Scholar 

  100. J.J. Tanner, Empirical power laws for the radii of gyration of protein oligomers. Acta Crystallogr. D Struct. Biol. 72(10), 1119–1129 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. S. Ghahremanian, M.M. Rashidi, K. Raeisi, D. Toghraie, Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: a structural review. J. Mol. Liq. 354, 118901 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. M.Y. Lobanov, N. Bogatyreva, O. Galzitskaya, Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 42(4), 623–628 (2008)

    Article  CAS  Google Scholar 

  103. D. Li, H.-T. Li, H. Wu, Y. Wang, Using the group contribution method and molecular dynamics to predict the glass transition temperatures and mechanical properties of poly-(p-phenylenediamine-alt-2, 6-diformyl multiphenyl). J. Chem. Res. 45(9-10), 823–830 (2021)

    Article  CAS  Google Scholar 

  104. S. Ausaf Ali, I. Hassan, A. Islam, F. Ahmad, A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr. Protein Pept. Sci. 15(5), 456–476 (2014)

    Article  Google Scholar 

  105. J.A. Marsh, S.A. Teichmann, Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure 19(6), 859–867 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. M. Moret, G. Zebende, Amino acid hydrophobicity and accessible surface area. Phys. Rev. E 75(1), 011920 (2007)

    Article  CAS  Google Scholar 

  107. S. Sivakumar, M. Mohan, O. Franco, B. Thayumanavan, Inhibition of insect pest α-amylases by little and finger millet inhibitors. Pestic. Biochem. Physiol. 85(3), 155–160 (2006)

    Article  CAS  Google Scholar 

  108. B. Lee, F.M. Richards, The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55(3), 379–400 (1971)

    Article  CAS  PubMed  Google Scholar 

  109. S.L. Rath, K. Kumar, Investigation of the effect of temperature on the structure of SARS-Cov-2 spike protein by molecular dynamics simulations. Front. Mol. Biosci. 7, 583523 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. G.G. Maisuradze, A. Liwo, H.A. Scheraga, Principal component analysis for protein folding dynamics. J. Mol. Biol. 385(1), 312–329 (2009)

    Article  CAS  PubMed  Google Scholar 

  111. C.C. David, D.J. Jacobs, Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol. Biol. 1084, 193–226 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. G.G. Maisuradze, A. Liwo, H.A. Scheraga, Relation between free energy landscapes of proteins and dynamics. J. Chem. Theory Comput. 6(2), 583–595 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. B. Borges, G. Gallo, C. Coelho, N. Negri, F. Maiello, L. Hardy, M. Würtele, Dynamic cross correlation analysis of thermus thermophilus alkaline phosphatase and determinants of thermostability. Biochim. Biophys. Acta 1865(7), 129895 (2021)

    Article  CAS  Google Scholar 

  114. S. Kumar, P.A. Deshpande, Structural and thermodynamic analysis of factors governing the stability and thermal folding/unfolding of SazCA. PLoS One 16(4), e0249866 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Z. Chen, Y. Fu, W. Xu, M. Li, Molecular dynamics simulation of barnase: contribution of noncovalent intramolecular interaction to thermostability. Math. Probl. Eng. 2013, 504183 (2013)

    Article  Google Scholar 

  116. W. Gu, T. Wang, J. Zhu, Y. Shi, H. Liu, Molecular dynamics simulation of the unfolding of the human prion protein domain under low pH and high temperature conditions. Biophys. Chem. 104(1), 79–94 (2003)

    Article  CAS  PubMed  Google Scholar 

  117. E.R. Henry, R.B. Best, W.A. Eaton, Comparing a simple theoretical model for protein folding with all-atom molecular dynamics simulations. Proc. Natl. Acad. Sci. U S A 110(44), 17880–17885 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. D.B. Singh, R.K. Pathak, Bioinformatics: Methods and Applications (Academic Press, San Diego, 2021)

    Google Scholar 

  119. S. Piana, J.L. Klepeis, D.E. Shaw, Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol. 24, 98–105 (2014)

    Article  CAS  PubMed  Google Scholar 

  120. S.A. Hollingsworth, R.O. Dror, Molecular dynamics simulation for all. Neuron 99(6), 1129–1143 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. D.A. Beck, V. Daggett, Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods 34(1), 112–120 (2004)

    Article  CAS  PubMed  Google Scholar 

  122. J. Ferina, V. Daggett, Visualizing protein folding and unfolding. J. Mol. Biol. 431(8), 1540–1564 (2019)

    Article  CAS  PubMed  Google Scholar 

  123. L. Duan, X. Guo, Y. Cong, G. Feng, Y. Li, J.Z.H. Zhang, Accelerated molecular dynamics simulation for helical proteins folding in explicit water. Front. Chem. 7, 540 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

M.I.H. thanks the Council of Scientific and Industrial Research for financial support [Project No. 27(0368)/20/EMR-II].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Imtaiyaz Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassan, M.I. et al. (2023). Molecular Dynamics Simulation to Study Thermal Unfolding in Proteins. In: Saudagar, P., Tripathi, T. (eds) Protein Folding Dynamics and Stability. Springer, Singapore. https://doi.org/10.1007/978-981-99-2079-2_12

Download citation

Publish with us

Policies and ethics