Skip to main content

Investigating Protein Unfolding and Stability Using Chaotropic Agents and Molecular Dynamics Simulation

  • Chapter
  • First Online:
Protein Folding Dynamics and Stability
  • 609 Accesses

Abstract

Protein folding and unfolding processes follow a thermodynamically favourable transitional path. The folding process occurs on a timescale in the order of milliseconds; therefore, observing the correct transitional pathway is challenging. However, with the advancement of computer science, it is now possible to decipher the structural level changes in the folding pathway of the protein using the molecular dynamics (MD) simulation. The MD simulation can provide detailed information about various energetic terms, structural parameters, etc. One can calculate the secondary structure changes with respect to time using MD simulation and correlate them with the CD spectra results. It can also generate thousands of snapshots that can be used to determine accurate unfolding pathways through structure visualization. In this chapter, we describe how chaotropic agents and MD simulation can be used in combination to study the stability and unfolding process of a protein. We also discuss the software used in the MD simulation with a detailed methodology of the GROMACS tool. Lastly, we take two case studies to show the process of urea and GdnHCl-induced denaturation of proteins analysed through MD simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Fershi, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (W.H. Freeman, New York, 1999)

    Google Scholar 

  2. W. Kauzmann, Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63 (1959). https://doi.org/10.1016/S0065-3233(08)60608-7

    Article  CAS  PubMed  Google Scholar 

  3. H.S. Frank, F. Franks, Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. J. Chem. Phys. 48, 4746–4757 (1968). https://doi.org/10.1063/1.1668057

    Article  CAS  Google Scholar 

  4. D.O.V. Alonso, K.A. Dill, Solvent denaturation and stabilization of globular proteins. Biochemistry 30, 5974–5985 (1991). https://doi.org/10.1021/bi00238a023

    Article  CAS  PubMed  Google Scholar 

  5. A. Caflisch, M. Karplus, Molecular dynamics simulation of protein denaturation: solvation of the hydrophobic cores and secondary structure of barnase. Proc. Natl. Acad. Sci. U S A 91, 1746–1750 (1994). https://doi.org/10.1073/pnas.91.5.1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Wallqvist, D.G. Covell, D. Thirumalai, Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation. J. Am. Chem. Soc. 120, 427–428 (1998). https://doi.org/10.1021/ja972053v

    Article  CAS  Google Scholar 

  7. R. Chitra, P.E. Smith, Preferential interactions of cosolvents with hydrophobic solutes. J. Phys. Chem. B 105, 11513–11522 (2001). https://doi.org/10.1021/jp012354y

    Article  CAS  Google Scholar 

  8. S. Shimizu, H.S. Chan, Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force. Proteins 49, 560–566 (2002). https://doi.org/10.1002/prot.10263

    Article  CAS  PubMed  Google Scholar 

  9. B.J. Bennion, V. Daggett, The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl. Acad. Sci. U S A 100, 5142–5147 (2003). https://doi.org/10.1073/pnas.0930122100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Kunugi, N. Tanaka, Cold denaturation of proteins under high pressure. Biochim. Biophys. Acta 1595, 329–344 (2002). https://doi.org/10.1016/s0167-4838(01)00354-5

    Article  CAS  PubMed  Google Scholar 

  11. M.I. Marqués, J.M. Borreguero, H.E. Stanley, N.V. Dokholyan, Possible mechanism for cold denaturation of proteins at high pressure. Phys. Rev. Lett. 91, 138103 (2003). https://doi.org/10.1103/PhysRevLett.91.138103

    Article  CAS  PubMed  Google Scholar 

  12. J.S. Yang, W.W. Chen, J. Skolnick, E.I. Shakhnovich, All-atom ab initio folding of a diverse set of proteins. Structure 1993(15), 53–63 (2007). https://doi.org/10.1016/j.str.2006.11.010

    Article  CAS  Google Scholar 

  13. K.A. Dill, S.B. Ozkan, M.S. Shell, T.R. Weikl, The protein folding problem. Annu. Rev. Biophys. 37, 289–316 (2008). https://doi.org/10.1146/annurev.biophys.37.092707.153558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. V. Daggett, A. Fersht, The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 4, 497–502 (2003). https://doi.org/10.1038/nrm1126

    Article  CAS  PubMed  Google Scholar 

  15. K. Prince, S. Sasidharan, N. Nag, T. Tripathi, P. Saudagar, Integration of spectroscopic and computational data to analyze protein structure, function, folding, and dynamics, in Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics, ed. by P. Saudagar, T. Tripathi, (Academic Press, San Diego, 2023), pp. 483–502. https://doi.org/10.1016/B978-0-323-99127-8.00018-0

    Chapter  Google Scholar 

  16. P.L. Freddolino, A.S. Arkhipov, S.B. Larson, A. McPherson, K. Schulten, Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14, 437–449 (2006). https://doi.org/10.1016/j.str.2005.11.014

    Article  CAS  PubMed  Google Scholar 

  17. M. Levitt, R. Sharon, Accurate simulation of protein dynamics in solution. Proc. Natl. Acad. Sci. 85, 7557–7561 (1988). https://doi.org/10.1073/pnas.85.20.7557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D.A.C. Beck, D.O.V. Alonso, V. Daggett, A microscopic view of peptide and protein solvation. Biophys. Chem. 100, 221–237 (2003). https://doi.org/10.1016/s0301-4622(02)00283-1

    Article  CAS  PubMed  Google Scholar 

  19. V. Daggett, Protein folding−simulation. Chem. Rev. 106, 1898–1916 (2006). https://doi.org/10.1021/cr0404242

    Article  CAS  PubMed  Google Scholar 

  20. C.B. Anfinsen, Principles that govern the folding of protein chains. Science 181, 223–230 (1973). https://doi.org/10.1126/science.181.4096.223

    Article  CAS  PubMed  Google Scholar 

  21. T. Tripathi, Calculation of thermodynamic parameters of protein unfolding using far-ultraviolet circular dichroism. J. Protein. Proteomics 4(2), 85–91 (2013)

    Google Scholar 

  22. B. Honig, Protein folding: from the levinthal paradox to structure prediction. J. Mol. Biol. 293, 283–293 (1999). https://doi.org/10.1006/jmbi.1999.3006

    Article  CAS  PubMed  Google Scholar 

  23. D.B. Singh, T. Tripathi (eds.), Frontiers in Protein Structure, Function, and Dynamics (Springer, Singapore, 2020). https://doi.org/10.1007/978-981-15-5530-5

    Book  Google Scholar 

  24. B. Berger, T. Leighton, Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. J. Comput. Biol. 5, 27–40 (1998). https://doi.org/10.1089/cmb.1998.5.27

    Article  CAS  PubMed  Google Scholar 

  25. So much more to know. Science 309, 78–102 (2005). https://doi.org/10.1126/science.309.5731.78b

  26. J.D. Bryngelson, J.N. Onuchic, N.D. Socci, P.G. Wolynes, Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167–195 (1995). https://doi.org/10.1002/prot.340210302

    Article  CAS  PubMed  Google Scholar 

  27. K.A. Dill, H.S. Chan, From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10–19 (1997). https://doi.org/10.1038/nsb0197-10

    Article  CAS  PubMed  Google Scholar 

  28. J. Schonbrun, K.A. Dill, Fast protein folding kinetics. Proc. Natl. Acad. Sci. U S A 100, 12678–12682 (2003). https://doi.org/10.1073/pnas.1735417100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. H. Kaya, H.S. Chan, Explicit-chain model of native-state hydrogen exchange: Implications for event ordering and cooperativity in protein folding. Proteins 58, 31–44 (2005). https://doi.org/10.1002/prot.20286

    Article  CAS  PubMed  Google Scholar 

  30. P. Bhaganna, R.J.M. Volkers, A.N.W. Bell, K. Kluge, D.J. Timson, J.W. McGrath, H.J. Ruijssenaars, J.E. Hallsworth, Hydrophobic substances induce water stress in microbial cells. Microb. Biotechnol. 3, 701–716 (2010). https://doi.org/10.1111/j.1751-7915.2010.00203.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K.D. Collins, Charge density-dependent strength of hydration and biological structure. Biophys. J. 72, 65–76 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. G. Salvi, P. De Los Rios, M. Vendruscolo, Effective interactions between chaotropic agents and proteins. Proteins 61, 492–499 (2005). https://doi.org/10.1002/prot.20626

    Article  CAS  PubMed  Google Scholar 

  33. J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267, 585–590 (1977). https://doi.org/10.1038/267585a0

    Article  CAS  PubMed  Google Scholar 

  34. A. Warshel, M. Levitt, Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103, 227–249 (1976). https://doi.org/10.1016/0022-2836(76)90311-9

    Article  CAS  PubMed  Google Scholar 

  35. D. Roccatano, A. Barthel, M. Zacharias, Structural flexibility of the nucleosome core particle at atomic resolution studied by molecular dynamics simulation. Biopolymers 85, 407–421 (2007). https://doi.org/10.1002/bip.20690

    Article  CAS  PubMed  Google Scholar 

  36. S. Sharma, F. Ding, N.V. Dokholyan, Multiscale modeling of nucleosome dynamics. Biophys. J. 92, 1457–1470 (2007). https://doi.org/10.1529/biophysj.106.094805

    Article  CAS  PubMed  Google Scholar 

  37. I. Tinoco, J.-D. Wen, Simulation and analysis of single-ribosome translation. Phys. Biol. 6, 025006 (2009). https://doi.org/10.1088/1478-3975/6/2/025006

    Article  CAS  PubMed  Google Scholar 

  38. R. Brandman, Y. Brandman, V.S. Pande, A-site residues move independently from P-site residues in all-atom molecular dynamics simulations of the 70S bacterial ribosome. PLoS One 7, e29377 (2012). https://doi.org/10.1371/journal.pone.0029377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. T. Tripathi, V.K. Dubey, Advances in Protein Molecular and Structural Biology Methods (Academic Press, London, 2022)

    Google Scholar 

  40. M. Orozco, L. Orellana, A. Hospital, A.N. Naganathan, A. Emperador, O. Carrillo, J.L. Gelpí, Coarse-grained representation of protein flexibility. Foundations, successes, and shortcomings. Adv. Protein Chem. Struct. Biol. 85, 183–215 (2011). https://doi.org/10.1016/B978-0-12-386485-7.00005-3

    Article  CAS  PubMed  Google Scholar 

  41. T. Lazaridis, M. Karplus, Effective energy function for proteins in solution. Proteins 35, 133–152 (1999). https://doi.org/10.1002/(sici)1097-0134(19990501)35:2<133::aid-prot1>3.0.co;2-n

    Article  CAS  PubMed  Google Scholar 

  42. B. Roux, T. Simonson, Implicit solvent models. Biophys. Chem. 78, 1–20 (1999). https://doi.org/10.1016/s0301-4622(98)00226-9

    Article  CAS  PubMed  Google Scholar 

  43. U. Haberthür, A. Caflisch, FACTS: fast analytical continuum treatment of solvation. J. Comput. Chem. 29, 701–715 (2008). https://doi.org/10.1002/jcc.20832

    Article  CAS  PubMed  Google Scholar 

  44. M. Orozco, F.J. Luque, Theoretical methods for the description of the solvent effect in biomolecular systems. Chem. Rev. 100, 4187–4226 (2000). https://doi.org/10.1021/cr990052a

    Article  CAS  PubMed  Google Scholar 

  45. T. Luchko, S. Gusarov, D.R. Roe, C. Simmerling, D.A. Case, J. Tuszynski, A. Kovalenko, Three-dimensional molecular theory of solvation coupled with molecular dynamics in Amber. J. Chem. Theory Comput. 6, 607–624 (2010). https://doi.org/10.1021/ct900460m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. R. Anandakrishnan, A. Drozdetski, R.C. Walker, A.V. Onufriev, Speed of conformational change: comparing explicit and implicit solvent molecular dynamics simulations. Biophys. J. 108, 1153–1164 (2015). https://doi.org/10.1016/j.bpj.2014.12.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. J. Hermans, H.J.C. Berendsen, W.F. Van Gunsteren, J.P.M. Postma, A consistent empirical potential for water–protein interactions. Biopolymers 23, 1513–1518 (1984). https://doi.org/10.1002/bip.360230807

    Article  CAS  Google Scholar 

  48. A.D. MacKerell Jr., J. Wiorkiewicz-Kuczera, M. Karplus, An all-atom empirical energy function for the simulation of nucleic acids. J. Am. Chem. Soc. 117, 11946–11975 (1995). https://doi.org/10.1021/ja00153a017

    Article  CAS  Google Scholar 

  49. K.-H. Ott, B. Meyer, Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations. J. Comput. Chem. 17, 1068–1084 (1996). https://doi.org/10.1002/(SICI)1096-987X(199606)17:8<1068::AID-JCC14>3.0.CO;2-A

    Article  CAS  Google Scholar 

  50. A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998). https://doi.org/10.1021/jp973084f

    Article  CAS  PubMed  Google Scholar 

  51. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995). https://doi.org/10.1021/ja00124a002

    Article  CAS  Google Scholar 

  52. G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001). https://doi.org/10.1021/jp003919d

    Article  CAS  Google Scholar 

  53. M. Rueda, C. Ferrer-Costa, T. Meyer, A. Pérez, J. Camps, A. Hospital, J.L. Gelpí, M. Orozco, A consensus view of protein dynamics. Proc. Natl. Acad. Sci. U S A 104, 796–801 (2007). https://doi.org/10.1073/pnas.0605534104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. A. Perez, F. Lankas, F.J. Luque, M. Orozco, Towards a molecular dynamics consensus view of B-DNA flexibility. Nucleic Acids Res. 36, 2379–2394 (2008). https://doi.org/10.1093/nar/gkn082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. B.R. Brooks, C.L. Brooks, A.D. Mackerell, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009). https://doi.org/10.1002/jcc.21287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  57. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005). https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. M.T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L.V. Kalé, R.D. Skeel, K. Schulten, NAMD: a parallel, object-oriented molecular dynamics program. Int. J. Supercomput. Appl. High Perform. Comput. 10, 251–268 (1996). https://doi.org/10.1177/109434209601000401

    Article  Google Scholar 

  59. P. Larsson, B. Hess, E. Lindahl, Algorithm improvements for molecular dynamics simulations. WIREs Comput. Mol. Sci. 1, 93–108 (2011). https://doi.org/10.1002/wcms.3

    Article  CAS  Google Scholar 

  60. M.J. Harvey, G. Giupponi, G.D. Fabritiis, ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 5, 1632–1639 (2009). https://doi.org/10.1021/ct9000685

    Article  CAS  PubMed  Google Scholar 

  61. H. Shukla, R. Shukla, A. Sonkar, T. Pandey, T. Tripathi, Distant Phe345 mutation compromises the stability and activity of mycobacterium tuberculosis isocitrate lyase by modulating its structural flexibility. Sci. Rep. 7, 1058 (2017). https://doi.org/10.1038/s41598-017-01235-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. H. Shukla, R. Shukla, A. Sonkar, T. Tripathi, Alterations in conformational topology and interaction dynamics caused by L418A mutation leads to activity loss of mycobacterium tuberculosis isocitrate lyase. Biochem. Biophys. Res. Commun. 490, 276–282 (2017). https://doi.org/10.1016/j.bbrc.2017.06.036

    Article  CAS  PubMed  Google Scholar 

  63. R. Shukla, H. Shukla, T. Tripathi, Activity loss by H46A mutation in mycobacterium tuberculosis isocitrate lyase is due to decrease in structural plasticity and collective motions of the active site. Tuberculosis 108, 143–150 (2018). https://doi.org/10.1016/j.tube.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  64. R. Shukla, T.R. Singh, Virtual screening, pharmacokinetics, molecular dynamics and binding free energy analysis for small natural molecules against cyclin-dependent kinase 5 for Alzheimer’s disease. J. Biomol. Struct. Dyn. 38, 248–262 (2020). https://doi.org/10.1080/07391102.2019.1571947

    Article  CAS  PubMed  Google Scholar 

  65. R. Shukla, T.R. Singh, High-throughput screening of natural compounds and inhibition of a major therapeutic target HsGSK-3β for Alzheimer’s disease using computational approaches. J. Genet. Eng. Biotechnol. 19, 61 (2021). https://doi.org/10.1186/s43141-021-00163-w

    Article  PubMed  PubMed Central  Google Scholar 

  66. R. Shukla, P.B. Chetri, A. Sonkar, M.Y. Pakharukova, V.A. Mordvinov, T. Tripathi, Identification of novel natural inhibitors of opisthorchis felineus cytochrome P450 using structure-based screening and molecular dynamic simulation. J. Biomol. Struct. Dyn. 36, 3541–3556 (2018). https://doi.org/10.1080/07391102.2017.1392897

    Article  CAS  PubMed  Google Scholar 

  67. R. Shukla, H. Shukla, T. Tripathi, Structural and energetic understanding of novel natural inhibitors of Mycobacterium tuberculosis malate synthase. J. Cell. Biochem. 120(2), 2469–2482 (2019). https://doi.org/10.1002/jcb.27538

    Article  CAS  PubMed  Google Scholar 

  68. J. Kalita, R. Shukla, T. Tripathi, Structural basis of urea-induced unfolding of Fasciola gigantica glutathione S-transferase. J. Cell. Physiol. 234, 4491–4503 (2019). https://doi.org/10.1002/jcp.27253

    Article  CAS  PubMed  Google Scholar 

  69. A. Sonkar, H. Shukla, R. Shukla, J. Kalita, T. Tripathi, Unfolding of acinetobacter baumannii MurA proceeds through a metastable intermediate: a combined spectroscopic and computational investigation. Int. J. Biol. Macromol. 126, 941–951 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.124

    Article  CAS  PubMed  Google Scholar 

  70. P.B. Chetri, R. Shukla, J.M. Khan, A.K. Padhi, T. Tripathi, Unraveling the structural basis of urea-induced unfolding of Fasciola gigantica cytosolic malate dehydrogenase. J. Mol. Liq. 349, 118170 (2022). https://doi.org/10.1016/j.molliq.2021.118170

    Article  CAS  Google Scholar 

  71. R. Shukla, T. Tripathi, Molecular dynamics simulation in drug discovery: opportunities and challenges, in Innovations and Implementations of Computer Aided Drug Discovery Strategies in Rational Drug Design, ed. by S.K. Singh, (Springer, Singapore, 2021), pp. 295–316. https://doi.org/10.1007/978-981-15-8936-2_12

    Chapter  Google Scholar 

  72. R. Shukla, T. Tripathi, Molecular dynamics simulation of protein and protein–ligand complexes, in Computer-Aided Drug Design—An Overview, ed. by D.B. Singh, (Springer, Singapore, 2020), pp. 133–161. https://doi.org/10.1007/978-981-15-6815-2_7

    Chapter  Google Scholar 

  73. P. Saudagar, T. Tripathi, Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics (Academic Press, San Diego, 2023)

    Google Scholar 

  74. S.B. Syed, F.I. Khan, S.H. Khan, S. Srivastava, G.M. Hasan, K.A. Lobb, A. Islam, M.I. Hassan, F. Ahmad, Unravelling the unfolding mechanism of human integrin linked kinase by GdmCl-induced denaturation. Int. J. Biol. Macromol. 117, 1252–1263 (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.025

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, R., Tripathi, T. (2023). Investigating Protein Unfolding and Stability Using Chaotropic Agents and Molecular Dynamics Simulation. In: Saudagar, P., Tripathi, T. (eds) Protein Folding Dynamics and Stability. Springer, Singapore. https://doi.org/10.1007/978-981-99-2079-2_10

Download citation

Publish with us

Policies and ethics