Skip to main content

Advertisement

Log in

Docetaxel, cyclophosphamide, and epirubicin: application of PBPK modeling to gain new insights for drug-drug interactions

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The new adjuvant chemotherapy of docetaxel, epirubicin, and cyclophosphamide has been recommended for treating breast cancer. It is necessary to investigate the potential drug-drug Interactions (DDIs) since they have a narrow therapeutic window in which slight differences in exposure might result in significant differences in treatment efficacy and tolerability. To guide clinical rational drug use, this study aimed to evaluate the DDI potentials of docetaxel, cyclophosphamide, and epirubicin in cancer patients using physiologically based pharmacokinetic (PBPK) models. The GastroPlus™ was used to develop the PBPK models, which were refined and validated with observed data. The established PBPK models accurately described the pharmacokinetics (PKs) of three drugs in cancer patients, and the predicted-to-observed ratios of all the PK parameters met the acceptance criterion. The PBPK model predicted no significant changes in plasma concentrations of these drugs during co-administration, which was consistent with the observed clinical phenomenon. Besides, the verified PBPK models were then used to predict the effect of other Cytochrome P450 3A4 (CYP3A4) inhibitors/inducers on these drug exposures. In the DDI simulation, strong CYP3A4 modulators changed the exposure of three drugs by 0.71–1.61 fold. Therefore, patients receiving these drugs in combination with strong CYP3A4 inhibitors should be monitored regularly to prevent adverse reactions. Furthermore, co-administration of docetaxel, cyclophosphamide, or epirubicin with strong CYP3A4 inducers should be avoided. In conclusion, the PBPK models can be used to further investigate the DDI potential of each drug and to develop dosage recommendations for concurrent usage by additional perpetrators or victims.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL et al (2022) Cancer statistics, 2022. CA: Cancer J Clin 72(1):7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  2. Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Nakatsukasa K et al (2017) Docetaxel and cyclophosphamide as neoadjuvant chemotherapy in HER2-negative primary breast cancer. Breast Cancer 24(1):63–68. https://doi.org/10.1007/s12282-016-0666-7

    Article  PubMed  Google Scholar 

  4. Marra A, Curigliano G (2021) Adjuvant and neoadjuvant treatment of triple-negative breast cancer with chemotherapy. Cancer J 27(1):41–49. https://doi.org/10.1097/ppo.0000000000000498

    Article  CAS  PubMed  Google Scholar 

  5. Baker J et al (2009) Docetaxel-related side effects and their management. Eur J Oncol Nurs 13(1):49–59. https://doi.org/10.1016/j.ejon.2008.10.003

    Article  PubMed  Google Scholar 

  6. Nicolella D et al (1996) Weekly low dose epirubicin in elderly cancer patients. Tumori 82(4):369–371. https://doi.org/10.1177/030089169608200414

    Article  CAS  PubMed  Google Scholar 

  7. Gori S et al (2006) Safety of epirubicin adjuvant chemotherapy in a breast cancer patient with chronic renal failure undergoing hemodialytic treatment. Tumori 92(4):364–365. https://doi.org/10.1177/030089160609200421

    Article  PubMed  Google Scholar 

  8. Morgan GJ, Davies FE (2013) Role of thalidomide in the treatment of patients with multiple myeloma. Crit Rev Oncol Hematol 88(Suppl 1):S14-22. https://doi.org/10.1016/j.critrevonc.2013.05.012

    Article  PubMed  Google Scholar 

  9. Tamura T et al (2016) A phase i trial of 100 mg/m2 docetaxel in patients with advanced or recurrent breast cancer. Acta Med Okayama 70(5):425–427. https://doi.org/10.18926/amo/54607

    Article  PubMed  Google Scholar 

  10. Muth M et al (2021) Role of TDM-based dose adjustments for taxane anticancer drugs. Br J Clin Pharmacol 87(2):306–316. https://doi.org/10.1111/bcp.14678

    Article  CAS  PubMed  Google Scholar 

  11. Baker SD, Sparreboom A, Verweij J (2006) Clinical pharmacokinetics of docetaxel: recent developments. Clin Pharmacokinet 45(3):235–252. https://doi.org/10.2165/00003088-200645030-00002

    Article  CAS  PubMed  Google Scholar 

  12. Clarke SJ, Rivory LP (1999) Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 36(2):99–114. https://doi.org/10.2165/00003088-199936020-00002

    Article  CAS  PubMed  Google Scholar 

  13. Shirakawa K et al (1999) Interaction of docetaxel (“Taxotere”) with human P-glycoprotein. Jpn J Cancer Res 90(12):1380–1386. https://doi.org/10.1111/j.1349-7006.1999.tb00723.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dyshlovoy SA et al (2022) New diterpenes from the marine sponge Spongionella sp. overcome drug resistance in prostate cancer by inhibition of P-glycoprotein. Sci Rep 12(1):13570. https://doi.org/10.1038/s41598-022-17447-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vredenburg G et al (2015) Activation of the anticancer drugs cyclophosphamide and ifosfamide by cytochrome P450 BM3 mutants. Toxicol Lett 232(1):182–192. https://doi.org/10.1016/j.toxlet.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  16. de Jonge ME et al (2005) Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 44(11):1135–1164. https://doi.org/10.2165/00003088-200544110-00003

    Article  PubMed  Google Scholar 

  17. Yule SM et al (2001) Cyclophosphamide metabolism in children following a 1-h and a 24-h infusion. Cancer Chemother Pharmacol 47(3):222–228. https://doi.org/10.1007/s002800000220

    Article  CAS  PubMed  Google Scholar 

  18. Martin H et al (2003) Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharm Res 20(4):557–568. https://doi.org/10.1023/a:1023234429596

    Article  CAS  PubMed  Google Scholar 

  19. Cersosimo RJ, Hong WK (1986) Epirubicin: a review of the pharmacology, clinical activity, and adverse effects of an adriamycin analogue. J Clin Oncol 4(3):425–439. https://doi.org/10.1200/jco.1986.4.3.425

    Article  CAS  PubMed  Google Scholar 

  20. Tariq M et al (2016) Improved oral efficacy of epirubicin through polymeric nanoparticles: pharmacodynamic and toxicological investigations. Drug Deliv 23(8):2990–2997. https://doi.org/10.3109/10717544.2015.1136713

    Article  CAS  PubMed  Google Scholar 

  21. Liu K et al (2021) Melatonin increases the chemosensitivity of diffuse large B-cell lymphoma cells to epirubicin by inhibiting P-glycoprotein expression via the NF-κB pathway. Transl Oncol 14(1):100876. https://doi.org/10.1016/j.tranon.2020.100876

    Article  CAS  PubMed  Google Scholar 

  22. Lindley C et al (2002) The effect of cyclophosphamide with and without dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug Metab Dispos 30(7):814–822. https://doi.org/10.1124/dmd.30.7.814

    Article  CAS  PubMed  Google Scholar 

  23. Eksborg S (1989) Pharmacokinetics of anthracyclines. Acta Oncol 28(6):873–876. https://doi.org/10.3109/02841868909092323

    Article  CAS  PubMed  Google Scholar 

  24. Ismail M et al (2020) Prevalence and significance of potential drug-drug interactions among cancer patients receiving chemotherapy. BMC Cancer 20(1):335. https://doi.org/10.1186/s12885-020-06855-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodrigues J et al (2023) Mitigating the risk of drug interactions in cancer patients taking oral anticancer agents: the role of a multidisciplinary team-based medication reconciliation. Cureus 15(2):e35324. https://doi.org/10.7759/cureus.35324

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mueller-Schoell A et al (2021) Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur J Clin Pharmacol 77(4):441–464. https://doi.org/10.1007/s00228-020-03014-8

    Article  PubMed  Google Scholar 

  27. Fahmy A et al (2021) Evaluating the utility of therapeutic drug monitoring in the clinical use of small molecule kinase inhibitors: a review of the literature. Expert Opin Drug Metab Toxicol 17(7):803–821. https://doi.org/10.1080/17425255.2021.1943357

    Article  CAS  PubMed  Google Scholar 

  28. Lin W et al (2022) Applications, challenges, and outlook for PBPK modeling and simulation: a regulatory. Ind Acad Perspect Pharm Res 39(8):1701–1731. https://doi.org/10.1007/s11095-022-03274-2

    Article  CAS  Google Scholar 

  29. Kuepfer L et al (2016) Applied concepts in PBPK modeling: how to build a PBPK/PD model. CPT Pharmacometrics Syst Pharmacol 5(10):516–531. https://doi.org/10.1002/psp4.12134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rowland Yeo K et al (2011) Prediction of time-dependent CYP3A4 drug-drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover. Eur J Pharm Sci 43(3):160–173. https://doi.org/10.1016/j.ejps.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  31. Sudsakorn S et al (2020) 2020 FDA drug-drug interaction guidance: a comparison analysis and action plan by pharmaceutical industrial scientists. Curr Drug Metab 21(6):403–426. https://doi.org/10.2174/1389200221666200620210522

    Article  CAS  PubMed  Google Scholar 

  32. Mendes MS et al (2020) A physiologically based pharmacokinetic—pharmacodynamic modelling approach to predict incidence of neutropenia as a result of drug-drug interactions of paclitaxel in cancer patients. Eur J Pharm Sci 150:105355. https://doi.org/10.1016/j.ejps.2020.105355

    Article  CAS  PubMed  Google Scholar 

  33. Cheeti S et al (2013) A physiologically based pharmacokinetic (PBPK) approach to evaluate pharmacokinetics in patients with cancer. Biopharm Drug Dispos 34(3):141–154. https://doi.org/10.1002/bdd.1830

    Article  CAS  PubMed  Google Scholar 

  34. Baker SD et al (2004) Factors affecting cytochrome P-450 3A activity in cancer patients. Clin Cancer Res 10(24):8341–8350. https://doi.org/10.1158/1078-0432.Ccr-04-1371

    Article  CAS  PubMed  Google Scholar 

  35. Peng B et al (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22(5):935–942. https://doi.org/10.1200/jco.2004.03.050

    Article  CAS  PubMed  Google Scholar 

  36. Joseph VR (2022) Optimal ratio for data splitting. Statist Analy Data Mining 15(4):531–538. https://doi.org/10.1002/sam.11583

    Article  Google Scholar 

  37. Singh A et al (2021) Novel vitamin E TPGS based docetaxel nanovesicle formulation for its safe and effective parenteral delivery: toxicological, pharmacokinetic and pharmacodynamic evaluation. J Liposome Res 31(4):365–380. https://doi.org/10.1080/08982104.2020.1835955

    Article  CAS  PubMed  Google Scholar 

  38. Bruno R, Sanderink GJ (1993) Pharmacokinetics and metabolism of taxotere (docetaxel). Cancer Surv 17:305–313

    CAS  PubMed  Google Scholar 

  39. Rodgers T, Leahy D, Rowland M (2005) Tissue distribution of basic drugs: accounting for enantiomeric, compound and regional differences amongst beta-blocking drugs in rat. J Pharm Sci 94(6):1237–1248. https://doi.org/10.1002/jps.20323

    Article  CAS  PubMed  Google Scholar 

  40. Rodgers T, Rowland M (2006) Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 95(6):1238–1257. https://doi.org/10.1002/jps.20502

    Article  CAS  PubMed  Google Scholar 

  41. Han SY et al (2019) LC478, a novel di-substituted adamantyl derivative, enhances the oral bioavailability of docetaxel in rats. Pharmaceutics 11(3):135. https://doi.org/10.3390/pharmaceutics11030135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ansaar R, Meech R, Rowland A (2023) A physiologically based pharmacokinetic model to predict determinants of variability in epirubicin exposure and tissue distribution. Pharmaceutics 15(4):1222. https://doi.org/10.3390/pharmaceutics15041222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sparreboom A et al (1998) Preclinical pharmacokinetics of paclitaxel and docetaxel. Anticancer Drugs 9(1):1–17. https://doi.org/10.1097/00001813-199801000-00001

    Article  CAS  PubMed  Google Scholar 

  44. Cai T et al (2020) The influence of different triazole antifungal agents on the pharmacokinetics of cyclophosphamide. Ann Pharmacother 54(7):676–683. https://doi.org/10.1177/1060028019896894

    Article  CAS  PubMed  Google Scholar 

  45. Robert J (1994) Clinical pharmacokinetics of epirubicin. Clin Pharmacokinet 26(6):428–438. https://doi.org/10.2165/00003088-199426060-00002

    Article  CAS  PubMed  Google Scholar 

  46. Cohen JL, Jao JY, Jusko WJ (1971) Pharmacokinetics of cyclophosphamide in man. Br J Pharmacol 43(3):677–680. https://doi.org/10.1111/j.1476-5381.1971.tb07199.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shou M et al (1998) Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics 8(5):391–401. https://doi.org/10.1097/00008571-199810000-00004

    Article  CAS  PubMed  Google Scholar 

  48. Huang Z, Roy P, Waxman DJ (2000) Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 59(8):961–972. https://doi.org/10.1016/s0006-2952(99)00410-4

    Article  CAS  PubMed  Google Scholar 

  49. Iwakiri T et al (2008) Inhibition of carrier-mediated uptake of epirubicin reduces cytotoxicity in primary culture of rat hepatocytes. J Appl Toxicol 28(3):329–336. https://doi.org/10.1002/jat.1283

    Article  CAS  PubMed  Google Scholar 

  50. Baumhäkel M et al (2001) Screening for inhibitory effects of antineoplastic agents on CYP3A4 in human liver microsomes. Int J Clin Pharmacol Ther 39(12):517–528. https://doi.org/10.5414/cpp39517

    Article  PubMed  Google Scholar 

  51. Hedmer M et al (2008) Validation of urinary excretion of cyclophosphamide as a biomarker of exposure by studying its renal clearance at high and low plasma concentrations in cancer patients. Int Arch Occup Environ Health 81(3):285–293. https://doi.org/10.1007/s00420-007-0211-2

    Article  CAS  PubMed  Google Scholar 

  52. Shin DH et al (2014) Hepatic uptake of epirubicin by isolated rat hepatocytes and its biliary excretion after intravenous infusion in rats. Arch Pharm Res 37(12):1599–1606. https://doi.org/10.1007/s12272-014-0475-5

    Article  CAS  PubMed  Google Scholar 

  53. Innocenti F et al (2001) Epirubicin glucuronidation is catalyzed by human UDP-glucuronosyltransferase 2B7. Drug Metab Dispos 29(5):686–692

    CAS  PubMed  Google Scholar 

  54. Zhao P (2017) Report from the EMA workshop on qualification and reporting of physiologically based pharmacokinetic (PBPK) modeling and simulation. CPT Pharmacometrics Syst Pharmacol 6(2):71–72. https://doi.org/10.1002/psp4.12166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abduljalil K et al (2014) Deciding on success criteria for predictability of pharmacokinetic parameters from in vitro studies: an analysis based on in vivo observations. Drug Metab Dispos 42(9):1478–1484. https://doi.org/10.1124/dmd.114.058099

    Article  CAS  PubMed  Google Scholar 

  56. Finch A, Pillans P (2014) P-glycoprotein and its role in drug-drug interactions. Aust Prescriber 37:137–139. https://doi.org/10.18773/austprescr.2014.050

    Article  Google Scholar 

  57. Liu H et al (2021) Application of physiologically based pharmacokinetic modeling to evaluate the drug-drug and drug-disease interactions of apatinib. Front Pharmacol 12:780937. https://doi.org/10.3389/fphar.2021.780937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davis MW, Wason S, Digiacinto JL (2013) Colchicine-antimicrobial drug interactions: what pharmacists need to know in treating gout. Consult Pharm 28(3):176–183. https://doi.org/10.4140/TCP.n.2013.176

    Article  PubMed  Google Scholar 

  59. Oo C, Chen YC (2009) The need for multiple doses of 400 mg ketoconazole as a precipitant inhibitor of a CYP3A substrate in an in vivo drug-drug interaction study. J Clin Pharmacol 49(3):368–369. https://doi.org/10.1177/0091270008325931

    Article  PubMed  Google Scholar 

  60. Ke AB et al (2014) Itraconazole and clarithromycin as ketoconazole alternatives for clinical CYP3A inhibition studies. Clin Pharmacol Ther 95(5):473–476. https://doi.org/10.1038/clpt.2014.41

    Article  CAS  PubMed  Google Scholar 

  61. Khadka P et al (2018) Considerations in preparing for clinical studies of inhaled rifampicin to enhance tuberculosis treatment. Int J Pharm 548(1):244–254. https://doi.org/10.1016/j.ijpharm.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  62. Kenmotsu H, Tanigawara Y (2015) Pharmacokinetics, dynamics and toxicity of docetaxel: why the Japanese dose differs from the Western dose. Cancer Sci 106(5):497–504. https://doi.org/10.1111/cas.12647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vasey PA et al (2002) Phase I study of docetaxel in combination with cyclophosphamide as first-line chemotherapy for metastatic breast cancer. Br J Cancer 87(10):1072–1078. https://doi.org/10.1038/sj.bjc.6600626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rischin D et al (2002) Phase I and pharmacokinetic study of docetaxel in combination with epirubicin and cyclophosphamide in advanced cancer: dose escalation possible with granulocyte colony-stimulating factor, but not with prophylactic antibiotics. Ann Oncol 13(11):1810–1818. https://doi.org/10.1093/annonc/mdf305

    Article  CAS  PubMed  Google Scholar 

  65. Engels FK et al (2004) Effect of cytochrome P450 3A4 inhibition on the pharmacokinetics of docetaxel. Clin Pharmacol Ther 75(5):448–454. https://doi.org/10.1016/j.clpt.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  66. Grimstein M et al (2019) Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. Food and Drug Administration’s Office of clinical pharmacology. J Pharm Sci 108(1):21–25. https://doi.org/10.1016/j.xphs.2018.10.033

    Article  CAS  PubMed  Google Scholar 

  67. Wagner C et al (2015) Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and Drug Administration. Clin Pharmacokinet 54(1):117–127. https://doi.org/10.1007/s40262-014-0188-4

    Article  CAS  PubMed  Google Scholar 

  68. Wagner C et al (2016) Predicting the effect of CYP3A inducers on the pharmacokinetics of substrate drugs using physiologically based pharmacokinetic (PBPK) modeling: an analysis of PBPK submissions to the US FDA. Clin Pharmacokinet 55(4):475–483. https://doi.org/10.1007/s40262-015-0330-y

    Article  CAS  PubMed  Google Scholar 

  69. Alevizakos M et al (2016) Colonisation with extended-spectrum β-lactamase-producing enterobacteriaceae and risk for infection among patients with solid or haematological malignancy: a systematic review and meta-analysis. Int J Antimicrob Agents 48(6):647–654. https://doi.org/10.1016/j.ijantimicag.2016.08.021

    Article  CAS  PubMed  Google Scholar 

  70. Gudiol C, Aguado JM, Carratalà J (2016) Bloodstream infections in patients with solid tumors. Virulence 7(3):298–308. https://doi.org/10.1080/21505594.2016.1141161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baneyx G et al (2014) Physiologically based pharmacokinetic modeling of CYP3A4 induction by rifampicin in human: influence of time between substrate and inducer administration. Eur J Pharm Sci 56:1–15. https://doi.org/10.1016/j.ejps.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  72. Ma Y et al (2021) Therapeutic drug monitoring of docetaxel by pharmacokinetics and pharmacogenetics: a randomized clinical trial of AUC-guided dosing in nonsmall cell lung cancer. Clin Transl Med 11(4):e354. https://doi.org/10.1002/ctm2.354

    Article  PubMed  PubMed Central  Google Scholar 

  73. (2007) American Society of Clinical Oncology 2007 clinical practice guideline recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Oncol Pract 3(6), 326–329. https://doi.org/10.1200/jop.0768502

  74. Thai HT et al (2015) Optimizing pharmacokinetic bridging studies in paediatric oncology using physiologically-based pharmacokinetic modelling: application to docetaxel. Br J Clin Pharmacol 80(3):534–547. https://doi.org/10.1111/bcp.12702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to all people for the contributions to the manuscript.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

T.T. Li: Conceptualization, Methodology, Investigation, Data Curation, Writing—Original Draft, Writing—Review & Editing. S.F. Zhou: Conceptualization, Methodology, Investigation, Writing—Review & Editing, Supervision. L. Wang: Conceptualization, Methodology, Investigation, Supervision. T.P. Zhao: Conceptualization, Investigation, Methodology. J. Wang: Conceptualization, Methodology, Investigation. F. Shao: Conceptualization, Writing—Review & Editing, Supervision, Project administration.

Corresponding author

Correspondence to Feng Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 862 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zhou, S., Wang, L. et al. Docetaxel, cyclophosphamide, and epirubicin: application of PBPK modeling to gain new insights for drug-drug interactions. J Pharmacokinet Pharmacodyn (2024). https://doi.org/10.1007/s10928-024-09912-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10928-024-09912-z

Keywords

Navigation