Skip to main content

Advertisement

Log in

Pharmacodynamic modeling of the effect of changes in the environment on cellular lifespan and cellular response

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Lifespan-based pharmacodynamic (PD) models of cellular response assume that the lifespan of cells is predetermined at the time of cellular production, despite recognized changes in the cellular environment following production that may alter the survival of the cells. This work extends previously proposed cellular lifespan PD models to incorporate environmental effects on the cell lifespan by considering two basic classes of models from survival analysis: accelerated life and relative risk models. Cellular responses using both model classes were simulated using a steady-state cellular production rate with changes in the environmental effects resulting from three different basic profiles. The environmental effect models were also fitted to the red blood cell (RBC) and hemoglobin concentration data from six sheep following hematopoietic ablation by busulfan administration. The simulations indicated that the basic shapes of the cellular responses were different between the accelerated life and relative risk models. Due to the more direct physical interpretation, relatively simple steady-state relationship between the cellular response and environmental effects, and the ability to reduce the model to a “point” baseline lifespan distribution, the accelerated life model appears to be a more realistic and flexible model. The analysis of the sheep RBC and hemoglobin data indicated that the environmental effect began to decrease the survival of cells 1–2 weeks following initiation of ablation and that the average “severity” of the environmental effect increased 3.49 (29.5%) (mean (C.V.)) fold under the accelerated life model. Alternative models without an environmental effect did not describe the observed data as well. The proposed environmental effect cellular lifespan PD models allow for the incorporation of arbitrary changes in the conditions of the cellular environment and modeling of environmentally dependent cellular survival. These PD models have potential applications in hematological management of end-stage renal disease, transfusion medicine, and patients undergoing chemotherapy, among other diseases and therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIC:

Akaike’s Information Criterion

BV :

Blood volume

e(t, z):

Cumulative measure of the effect of the environment

e avg :

Average value of the environmental effect function

E {·|· }:

Conditional mathematical expectation of a random variable

f prod (t):

Production rate (i.e. input rate into the sampling compartment)

\({f_{prod}^{SS}}\) :

Steady-state production rate

g (t), h (t):

Environmental effect functions

\({\ell _b \left({\tau, z}\right)}\) :

Baseline p.d.f. of cellular lifespans

\({\ell _e \left({\tau, z}\right)}\) :

Observed p.d.f. of cellular lifespans with an environmental effect

λ b (t, z ):

Baseline hazard function

λ e (t, z):

Observed hazard function with an environmental effect

μ b :

Mean of the baseline cellular lifespan

μ SS :

Steady-state mean cellular lifespan

MCH :

Mean corpuscular hemoglobin

M :

Positive multiple of the baseline environmental effect function value

v, u :

Arbitrary integration variables

N (t):

Number of cells in the sampling compartment

P ( · ):

Probability

p.d.f.:

Probability density function

PD:

Pharmacodynamic

RBC:

Red blood cell

σ :

Standard deviation of the baseline cellular lifespan

SD:

Standard deviation

S b (t, z):

Baseline survival function

S e (t, z):

Observed survival function with an environmental effect

SS :

Steady-state (super- and sub-scripted with other terms)

τ, T :

Cellular lifespan, i.e. the time from input into the sampling space to the output from the sampling space (capital tau refers to a random cellular lifespan variable)

t :

Time

t 0 :

Time of initiation of busulfan administration

T decline :

Time period over which the production rate declines from \({f_{prod}^{SS}}\) to zero

z :

Time of production

References

  1. Krzyzanski W, Ramakrishnan R, Jusko WJ (1999) Basic pharmacodynamic models for agents that alter production of natural cells. J Pharmacokinet Biopharm 27: 467–489

    PubMed  CAS  Google Scholar 

  2. Krzyzanski W, Woo S, Jusko WJ (2006) Pharmacodynamic models for agents that alter production of natural cells with various distributions of lifespans. J Pharmacokinet Pharmacodyn 33: 125–166 doi:10.1007/s10928-006-9007-3

    Article  PubMed  CAS  Google Scholar 

  3. Freise KJ, Widness JA, Schmidt RL, Veng-Pedersen P (2007) Pharmacodynamic analysis of time-variant cellular disposition: reticulocyte disposition changes in phlebotomized sheep. J Pharmacokinet Pharmacodyn 34: 519–547 doi:10.1007/s10928-007-9056-2

    Article  PubMed  CAS  Google Scholar 

  4. Freise KJ, Widness JA, Schmidt RL, Veng-Pedersen P (2008) Modeling time variant distributions of cellular lifespans: increases in circulating reticulocyte lifespans following double phlebotomies in sheep. J Pharmacokinet Pharmacodyn 35: 285–323

    Article  PubMed  Google Scholar 

  5. Uehlinger DE, Gotch FA, Sheiner LB (1992) A pharmacodynamic model of erythropoietin therapy for uremic anemia. Clin Pharmacol Ther 51: 76–89

    PubMed  CAS  Google Scholar 

  6. Harker LA, Roskos LK, Marzec UM, Carter RA, Cherry JK, Sundell B, Cheung EN, Terry D, Sheridan W (2000) Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood 95: 2514–2522

    PubMed  CAS  Google Scholar 

  7. Krzyzanski W, Perez-Ruixo JJ, Vermeulen A (2008) Basic pharmacodynamic models for agents that alter the lifespan distribution of natural cells. J Pharmacokinet Pharmacodyn 35: 349–377 doi:10.1007/s10928-008-9092-6

    Article  PubMed  CAS  Google Scholar 

  8. Perez-Ruixo JJ, Krzyzanski W, Hing J (2008) Pharmacodynamic analysis of recombinant human erythropoietin effect on reticulocyte production rate and age distribution in healthy subjects. Clin Pharmacokinet 47: 399–415

    Article  PubMed  CAS  Google Scholar 

  9. Kruse A, Uehlinger DE, Gotch F, Kotanko P, Levin NW (2008) Red blood cell lifespan, erythropoiesis and hemoglobin control. Contrib Nephrol 161: 247–254 doi:10.1159/000130698

    Article  PubMed  Google Scholar 

  10. Cimen MY (2008) Free radical metabolism in human erythrocytes. Clin Chim Acta 390: 1–11 doi:10.1016/j.cca.2007.12.025

    Article  PubMed  CAS  Google Scholar 

  11. Durken M, Agbenu J, Finckh B, Hubner C, Pichlmeier U, Zeller W, Winkler K, Zander A, Kohlschutter A (1995) Deteriorating free radical-trapping capacity and antioxidant status in plasma during bone marrow transplantation. Bone Marrow Transplant 15: 757–762

    PubMed  CAS  Google Scholar 

  12. Westhuyzen J, Saltissi D, Stanbury V (2003) Oxidative stress and erythrocyte integrity in end-stage renal failure patients hemodialysed using a vitamin E-modified membrane. Ann Clin Lab Sci 33: 3–10

    PubMed  CAS  Google Scholar 

  13. Serebruany VL, Malinin AI, Pokov AN, Hanley DF (2008) Antiplatelet profiles of the fixed-dose combination of extended-release dipyridamole and low-dose aspirin compared with clopidogrel with or without aspirin in patients with type 2 diabetes and a history of transient ischemic attack: a randomized, single-blind, 30-day trial. Clin Ther 30: 249–259 doi:10.1016/j.clinthera.2008.02.006

    Article  PubMed  CAS  Google Scholar 

  14. Khosravi Shahi P, Fernandez Pineda I (2008) Tumoral angiogenesis: review of the literature. Cancer Invest 26: 104–108 doi:10.1080/07357900701662509

    Article  PubMed  CAS  Google Scholar 

  15. Novotny VM (2007) Red cell transfusion in medicine: future challenges. Transfus Clin Biol 14: 538–541 doi:10.1016/j.tracli.2008.01.001

    Article  PubMed  CAS  Google Scholar 

  16. James I (2008) Accelerated failure-time models. In: Armitageand P, Colton T(eds) Encyclopedia of biostatistics, vol. Online electronic resource. Wiley, Hoboken

    Google Scholar 

  17. Kalbfeisch JD, Prentice RL (2002) The statistical analysis of failure time data. 2nd edn. Wiley, Hoboken

    Google Scholar 

  18. Lee ET, Wang JW (2003) Statistical methods for survival data analysis. Wiley, Hoboken

    Google Scholar 

  19. Hoffman R, Benz EJ Jr, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P (2005) Hematology: basic principles and applications. 4th edn. Elsevier Inc, United States of America

    Google Scholar 

  20. Krzyzanski W, Perez-Ruixo JJ (2007) An assessment of recombinant human erythropoietin effect on reticulocyte production rate and lifespan distribution in healthy subjects. Pharm Res 24: 758–772 doi:10.1007/s11095-006-9195-y

    Article  PubMed  CAS  Google Scholar 

  21. Landaw SA (1988) Factors that accelerate or retard red blood cell senescence. Blood Cells 14: 47–67

    PubMed  CAS  Google Scholar 

  22. Chapel S, Veng-Pedersen P, Hohl RJ, Schmidt RL, McGuire EM, Widness JA (2001) Changes in erythropoietin pharmacokinetics following busulfan-induced bone marrow ablation in sheep: evidence for bone marrow as a major erythropoietin elimination pathway. J Pharmacol Exp Ther 298: 820–824

    PubMed  CAS  Google Scholar 

  23. Mock DM, Lankford GL, Burmeister LF, Strauss RG (1997) Circulating red cell volume and red cell survival can be accurately determined in sheep using the [14C]cyanate label. Pediatr Res 41: 916–921 doi:10.1203/00006450-199706000-00020

    Article  PubMed  CAS  Google Scholar 

  24. Neelakantan S, Widness JA, Schmidt RL, Veng-Pedersen P (2006) A "bottom-up" approach for endo-PK/PD analysis. Biopharm Drug Dispos 27: 313–327 doi:10.1002/bdd.508

    Article  PubMed  CAS  Google Scholar 

  25. Wade L Jr, Sasser LB (1970) Body water, plasma volume, and erythrocyte volume in sheep. Am J Vet Res 31: 1375–1378

    PubMed  Google Scholar 

  26. Veng-Pedersen P (1977) Curve fitting and modelling in pharmacokinetics and some practical experiences with NONLIN and a new program FUNFIT. J Pharmacokinet Biopharm 5: 513–531 doi:10.1007/BF01061732

    Article  Google Scholar 

  27. Piessens R, deDoncker-Kapenga E, Uberhuber CW, Kahaner DK (1983) QUADPACK. Springer, New York

    Google Scholar 

  28. Akaike H (1974) Automatic control: a new look at the statistical model identification. IEEE Trans 19: 716–723

    Google Scholar 

  29. Tucker EM (1963) Red cell life span in young and adult sheep. Res Vet Sci 4: 11–23

    Google Scholar 

  30. Belair J, Mackey MC, Mahaffy JM (1995) Age-structured and two-delay models for erythropoiesis. Math Biosci 128: 317–346 doi:10.1016/0025-5564(94)00078-E

    Article  PubMed  CAS  Google Scholar 

  31. Woo S, Krzyzanski W, Jusko WJ (2008) Pharmacodynamic model for chemotherapy-induced anemia in rats. Cancer Chemother Pharmacol 62: 123–133

    Article  PubMed  CAS  Google Scholar 

  32. Cetin T, Arpaci F, Yilmaz MI, Saglam K, Ozturk B, Komurcu S, Gunay M, Ozet A, Akay C, Kilic S, Ulutin C (2004) Oxidative stress in patients undergoing high-dose chemotherapy plus peripheral blood stem cell transplantation. Biol Trace Elem Res 97: 237–247 doi:10.1385/BTER:97:3:237

    Article  PubMed  CAS  Google Scholar 

  33. Sangeetha P, Das UN, Koratkar R, Suryaprabha P (1990) Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radic Biol Med 8: 15–19 doi:10.1016/0891-5849(90)90139-A

    Article  PubMed  CAS  Google Scholar 

  34. de Franceschi L, Turrini F, Honczarenko M, Ayi K, Rivera A, Fleming MD, Law T, Mannu F, Kuypers FA, Bast A, van der Vijgh WJ, Brugnara C (2004) In vivo reduction of erythrocyte oxidant stress in a murine model of beta-thalassemia. Haematologica 89: 1287–1298

    PubMed  Google Scholar 

  35. Arnold BC, Reneau DM, Samaniego FJ (1989) New moment-identities based on the integrated survival function. IEEE Trans Reliab 38: 358–361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Veng-Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freise, K.J., Schmidt, R.L., Widness, J.A. et al. Pharmacodynamic modeling of the effect of changes in the environment on cellular lifespan and cellular response. J Pharmacokinet Pharmacodyn 35, 527–552 (2008). https://doi.org/10.1007/s10928-008-9100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-008-9100-x

Keywords

Navigation