Skip to main content
Log in

Pharmacodynamic model for chemotherapy-induced anemia in rats

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Anticancer agents often cause bone marrow toxicity resulting in progressive anemia which may influence the therapeutic effects of erythropoietic-stimulating agents. The objective of this study was to develop a pharmacodynamic (PD) model to describe chemotherapy-induced anemia in rats. Anemia was induced in male Wistar rats with a single intravenous (i.v.) injection of 60 mg/kg carboplatin. Hematological responses including reticulocytes, red blood cells (RBC), hemoglobin, and endogenous rat erythropoietin (EPO) were measured for up to 4 weeks. A catenary, lifespan-based, indirect response model served as a basic PD model to represent erythroid cellular populations in the bone marrow and blood involved in erythropoiesis. The model assumed that actively proliferating progenitor cells in the bone marrow are sensitive to anti-cancer agents and subject to an irreversible removal process. The removal rate of the target cells is proportional to drug activity concentrations and the cell numbers. An additional RBC loss from the circulation resulting from thrombocytopenia was described by a first-order process. The turnover process of rat EPO and EPO-mediated feedback inhibition mechanism regulated by hemoglobin changes were incorporated. Reticulocyte counts decreased rapidly and reached a nadir by day 3 after administration of carboplatin and returned to the baseline by day 13. This was followed by a gradual increase and the rebound peak occurred at about day 15. The hemoglobin nadir was approximately 9 g/dl observed at about 11–13 days compared to its normal value of 13 g/dl and hemoglobin returned to the baseline by day 30. The increase in endogenous rat EPO mirrored inversely hemoglobin changes and the maximum increase was observed soon after the hemoglobin nadir. The carboplatin-treated rats exhibited progressive anemia. The proposed model adequately described the time course of hematological changes after carboplatin in rats and can be a useful tool to explore potential strategies for the management of anemia caused by chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Henry DH (2004) The evolving role of epoetin alfa in cancer therapy. Oncologist 9:97–107

    Article  PubMed  CAS  Google Scholar 

  2. Cella D, Dobrez D, Glaspy J (2003) Control of cancer-related anemia with erythropoietic agents: a review of evidence for improved quality of life and clinical outcomes. Ann Oncol 14:511–519

    Article  PubMed  CAS  Google Scholar 

  3. Cella D, Zagari MJ, Vandoros C, Gagnon DD, Hurtz H-J, Nortier JWR (2003) Epoetin alfa treatment results in clinically significant improvements in quality of life in anemic cancer patients when referenced to the general population. J Clin Oncol 21:366–373

    Article  PubMed  Google Scholar 

  4. Gabrilove JL, Cleeland CS, Livingston RB, Sarokhan B, Winer E, Einhorn LH (2001) Clinical evaluation of once-weekly dosing of epoetin alfa in chemotherapy patients: improvements in hemoglobin and quality of life are similar to three-times-weekly dosing. J Clin Oncol 19:2875–2882

    PubMed  CAS  Google Scholar 

  5. Patton J, Kuzur M, Liggett W, Miranda F, Varsos H, Porter L (2004) Epoetin alfa 60,000 U once weekly followed by 120,000 U every 3 weeks increases and maintains hemoglobin levels in anemic cancer patients undergoing chemotherapy. Oncologist 9:90–96

    Article  PubMed  CAS  Google Scholar 

  6. Patton J, Reeves T, Wallace J (2004) Effectiveness of darbepoetin alfa versus epoetin alfa in patients with chemotherapy-induced anemia treated in clinical practice. Oncologist 9:451–458

    Article  PubMed  CAS  Google Scholar 

  7. Savonije JH, van Groeningen CJ, Wormhoudt LW, Giaccone G (2006) Early intervention with epoetin alfa during platinum-based chemotherapy: an analysis of the results of a multicenter, randomized, controlled trial based on initial hemoglobin level. Oncologist 11:206–216

    Article  PubMed  CAS  Google Scholar 

  8. Rizzo JD, Lichtin AE, Woolf SH, Seidenfeld J, Bennett CL, Cella D, Djulbegovic B, Goode MJ, Jakubowski AA, Lee SJ, Miller CB, Rarick MU, Regan DH, Browman GP, Gordon MS (2002) Use of epoetin in patients with cancer: evidence-based clinical practice guidelines of the American Society of Clinical Oncology and the American Society of Hematology. J Clin Oncol 20:4083–4107

    Article  PubMed  CAS  Google Scholar 

  9. Friberg LE, Freijs A, Sandstrom M, Karlsson MO (2000) Semiphysiological model for the time course of leukocytes after varying schedules of 5-fluorouracil in rats. J Pharmacol Exp Ther 295:734–40

    PubMed  CAS  Google Scholar 

  10. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20:4713–4721

    Article  PubMed  Google Scholar 

  11. Minami H, Sasaki Y, Saijo N, Ohtsu T, Fujii H, Igarashi T, Itoh K (1998) Indirect-response model for the time course of leukopenia with anticancer drugs. Clin Pharmacol Ther 64:511–521

    Article  PubMed  CAS  Google Scholar 

  12. Krzyzanski W, Jusko WJ (2002) Multiple-pool cell lifespan model of hematologic effects of anticancer agents. J Pharmacokinet Pharmacodyn 29:311–337

    Article  PubMed  CAS  Google Scholar 

  13. Go RS, Adjei AA (1999) Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol 17:409

    PubMed  CAS  Google Scholar 

  14. Tas F, Eralp Y, Basaran M, Sakar B, Alici S, Argon A, Bulutlar G, Camlica H, Aydiner A, Topuz E (2002) Anemia in oncology practice: relation to diseases and their therapies. Am J Clin Oncol 25:371–379

    Article  PubMed  Google Scholar 

  15. Woo S, Krzyzanski W, Jusko WJ (2006) Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats. J Pharmacol Exp Ther 319:1297–1306

    Article  PubMed  CAS  Google Scholar 

  16. Guo P, Li S, Gallo JM (2003) Determination of carboplatin in plasma and tumor by high-performance liquid chromatography-mass spectrometry. J Chromatogr B 783:43–52

    Article  CAS  Google Scholar 

  17. Knox RJ, Friedlos F, Lydall DA, Roberts JJ (1986) Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloro- platinum(II) and cis-diammine-(1,1-cyclobutanedicarboxylato) platinum(II) differ only in the kinetics of their interaction with DNA. Cancer Res 46:1972–1979

    PubMed  CAS  Google Scholar 

  18. Schmalbach TK, Borch RF (1989) Diethyldithiocarbamate modulation of murine bone marrow toxicity induced by cis-diammine (cyclobutanedicarboxylato) platinum (II). Cancer Res 49:6629–6633

    PubMed  CAS  Google Scholar 

  19. Boulikas T, Vougiouka M (2003) Cisplatin and platinum drugs at the molecular level. Oncol Rep 10:1663–1682 (Review)

    PubMed  CAS  Google Scholar 

  20. Krzyzanski W, Ramakrishnan R, Jusko WJ (1999) Basic pharmacodynamic models for agents that alter production of natural cells. J Pharmacokinet Biopharm 27:467–489

    PubMed  CAS  Google Scholar 

  21. Siddik ZH, Boxall FE, Harrap KR (1987) Haematological toxicity of carboplatin in rats. Br J Cancer 55:375–379

    PubMed  CAS  Google Scholar 

  22. Wintrobe MM (2003) Wintrobe’s clinical hematology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  23. Laird AK (1964) Dynamics of tumor growth. Br J Cancer 13:490–502

    PubMed  CAS  Google Scholar 

  24. D’Argenio DZ, Schumitzky A (1997) ADAPT II user’s guide: pharmacokinetic/pharmacodynamic system analysis software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

  25. Zhang Y, Andrews MC, Schyvens CG, McKenzie KU, Whitworth JA (2004) Adrenocorticotropic hormone, blood pressure, and serum erythropoietin concentrations in the rat. Am J Hypertens 17:457–461

    Article  PubMed  CAS  Google Scholar 

  26. Bernstein SH, Jusko WJ, Krzyzanski W, Nichol J, Wetzler M (2002) Pharmacodynamic modeling of thrombopoietin, platelet, and megakaryocyte dynamics in patients with acute myeloid leukemia undergoing dose intensive chemotherapy. J Clin Pharmacol 42:501–511

    Article  PubMed  CAS  Google Scholar 

  27. Desoize B, Madoulet C (2002) Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol Hematol 42:317–325

    Article  PubMed  Google Scholar 

  28. Davies MS, Berners-Price SJ, Hambley TW (2000) Slowing of cisplatin aquation in the presence of DNA but not in the presence of phosphate: improved understanding of sequence selectivity and the roles of monoaquated and diaquated species in the binding of cisplatin to DNA. Inorg Chem 39:5603–5613

    Article  PubMed  CAS  Google Scholar 

  29. van der Vijgh WJ (1991) Clinical pharmacokinetics of carboplatin. Clin Pharmacokinet 21:242–261

    Article  PubMed  Google Scholar 

  30. O’Dwyer PJ, Stevenson JP, Johnson SW (2000) Clinical pharmacokinetics and administration of established platinum drugs. Drugs 59:19–27

    Article  PubMed  CAS  Google Scholar 

  31. Tanke HJ, van Vianen PH, Emiliani FM, Neuteboom I, de Vogel N, Tates AD, de Bruijn EA, van Oosterom AT (1986) Changes in erythropoiesis due to radiation or chemotherapy as studied by flow cytometric determination of peripheral blood reticulocytes. Histochemistry 84:544–548

    Article  PubMed  CAS  Google Scholar 

  32. Matsumoto T, Endoh K, Kamisango K, Akamatsu K, Koizumi K, Higuchi M, Imai N, Mitsui H, Kawaguchi T (1990) Effect of recombinant human erythropoietin on anticancer drug-induced anaemia. Br J Haematol 75:463–468

    Article  PubMed  CAS  Google Scholar 

  33. Al-Huniti NH, Widness JA, Schmidt RL, Veng-Pedersen P (2004) Pharmacokinetic/pharmacodynamic analysis of paradoxal regulation of erythropoietin production in acute anemia. J Pharmacol Exp Ther 310:202–208

    Article  PubMed  CAS  Google Scholar 

  34. Eckardt K-U, Dittmer J, Neumann R, Bauer C, Kurtz A (1990) Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol 258:F1432–F1437

    PubMed  CAS  Google Scholar 

  35. Jelkmann W (1982) Temporal pattern of erythropoietin titers in kidney tissue during hypoxic hypoxia. Pflugers Arch 393:88–91

    Article  PubMed  CAS  Google Scholar 

  36. Abbrecht PH, Littell JK (1972) Plasma erythropoietin in men and mice during acclimatization to different altitudes. J Appl Physiol 32:54–58

    PubMed  CAS  Google Scholar 

  37. Kloft C, Wallin J, Henningsson A, Chatelut E, Karlsson MO (2006) Population pharmacokinetic-pharmacodynamic model for neutropenia with patient subgroup identification: comparison across anticancer drugs. Clin Cancer Res 12:5481–5490

    Article  PubMed  CAS  Google Scholar 

  38. Leger F, Loos WJ, Bugat R, Mathijssen RH, Goffinet M, Verweij J, Sparreboom A, Chatelut E (2004) Mechanism-based models for topotecan-induced neutropenia. Clin Pharmacol Ther 76:567–578

    Article  PubMed  CAS  Google Scholar 

  39. Latz JE, Karlsson MO, Rusthoven JJ, Ghosh A, Johnson RD (2006) A semimechanistic-physiologic population pharmacokinetic/pharmacodynamic model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol 57:412–426

    Article  PubMed  Google Scholar 

  40. van Kesteren C, Zandvliet AS, Karlsson MO, Mathot RA, Punt CJ, Armand JP, Raymond E, Huitema AD, Dittrich C, Dumez H, Roche HH, Droz JP, Ravic M, Yule SM, Wanders J, Beijnen JH, Fumoleau P, Schellens JH (2005) Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam. Invest New Drugs 23:225–234

    Article  PubMed  CAS  Google Scholar 

  41. Hartley C, Elliott S, Begley CG, McElroy P, Sutherland W, Khaja R, Heatherington AC, Graves T, Schultz H, Del Castillo J, Molineux G (2003) Kinetics of haematopoietic recovery after dose-intensive chemo/radiotherapy in mice: optimized erythroid support with darbepoetin alpha. Br J Haematol 122:623–636

    Article  PubMed  CAS  Google Scholar 

  42. Thews O, Kelleher DK, Vaupel P (2001) Erythropoietin restores the anemia-induced reduction in cyclophosphamide cytotoxicity in rat tumors. Cancer Res 61:1358–1361

    PubMed  CAS  Google Scholar 

  43. Thews O, Koenig R, Kelleher DK, Kutzner J, Vaupel P (1998) Enhanced radiosensitivity in experimental tumours following erythropoietin treatment of chemotherapy-induced anaemia. Br J Cancer 78:752–756

    PubMed  CAS  Google Scholar 

  44. Skomorovski K, Harpak H, Ianovski A, Vardi M, Visser TP, Hartong SC, van Vliet HH, Wagemaker G, Agur Z (2003) New TPO treatment schedules of increased safety and efficacy: pre-clinical validation of a thrombopoiesis simulation model. Br J Haematol 123:683–691

    Article  PubMed  Google Scholar 

  45. Stefanich EG, Carlson-Zermeno CC, McEvoy K, Reich M, Fielder PJ (2001) Dose schedule of recombinant murine thrombopoietin prior to myelosuppressive and myeloablative therapy in mice. Cancer Chemother Pharmacol 47:70–77

    Article  PubMed  CAS  Google Scholar 

  46. Ron IG, Peleg L, Rienstein S, Dotan A, Ticher A, Wolfson S, Ashkenazi IE (1998) Time dependency of hematopoietic growth factor coupled to chronotoxicity of carboplatin. Cancer Chemother Pharmacol 42:135–141

    Article  PubMed  CAS  Google Scholar 

  47. Criswell KA, Sulkanen AP, Hochbaum AF, Bleavins MR (2000) Effects of phenylhydrazine or phlebotomy on peripheral blood, bone marrow and erythropoietin in Wistar rats. J Appl Toxicol 20:25–34

    Article  PubMed  CAS  Google Scholar 

  48. Chapel SH, Veng-Pedersen P, Schmidt RL, Widness JA (2000) A pharmacodynamic analysis of erythropoietin-stimulated reticulocyte response in phlebotomized sheep. J Pharmacol Exp Ther 295:346–351

    PubMed  CAS  Google Scholar 

  49. Redondo PA, Alvarez AI, Diez C, Fernandez-Rojo F, Prieto JG (1995) Physiological response to experimentally induced anemia in rats: a comparative study. Lab Anim Sci 45:578–583

    PubMed  CAS  Google Scholar 

  50. Unami A, Nishina N, Terai T, Sato S, Tamura T, Noda K, Mine Y (1996) Effects of cisplatin on erythropoietin production in rats. J Toxicol Sci 21:157–165

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, S., Krzyzanski, W. & Jusko, W.J. Pharmacodynamic model for chemotherapy-induced anemia in rats. Cancer Chemother Pharmacol 62, 123–133 (2008). https://doi.org/10.1007/s00280-007-0582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0582-9

Keywords

Navigation