Skip to main content
Log in

Gold Nanoparticles Decorated Chitosan-Agarose Modified Magnetic Nanocomposite: Catalytic Application for the Preparation of Tetrazoles and Biological Evaluation for the Treatment of Lung Carcinoma

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This article describes a new type of core–shell pattern Fe3O4 nanoparticle (Au/CS-agar@Fe3O4) that was developed using Au NPs and chitosan-agarose composite. Our goal in catalytic exploration was to synthesize 5-substituted-1H-tetrazoles via click synthesis using aryl halides. By this method, using K4[Fe(CN)6] as a nontoxic CN resource, we treated a variety of aryl halides (Cl, Br, and I) using the highly effective and reusable Au/CS-agar@Fe3O4 catalyst, catalyzing the [3 + 2]-cycloaddition of the corresponding aryl nitriles with NaN3 to the successive one-pot solvent-free preparation at 120 °C of 5-substituted-1H-tetrazoles. The various substrates provided a yield in the range of 70–96% after the reaction of 12 h. The catalyst's robustness was supported by tests for leaching, hot filtration, and catalyst reusability nine times in a row. In the medicinal part, the anticancer properties of Au/CS-agar@Fe3O4 nanocomposite against lung cancer cell lines were determined. In vitro experiments, after 3–4 passages, the cancer cells (NCI-H1563, NCI-H1573, NCI-H1975, and NCI-H661) and normal cell (HUVEC) were prepared in terms of morphology and number. After segregating the cells from the flask surface by trypsin–EDTA, cell viability was assessed and counted, and 3 × 103 cells were cultured with or without nanoparticles in 96 wells. IC50 of Au/CS-agar@Fe3O4 nanocomposite was 160, 173, 142, and 212 on NCI-H1563, NCI-H1573, NCI-H1975, and NCI-H661 cancer cells. In this study, the highest antioxidant efficacy on DPPH was reported approximately 100% at 1000 μg/ml. The antioxidant IC50 of Au/CS-agar@Fe3O4 nanocomposite was 254 µg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The authors declare that the data can be available on request to the authors.

References

  1. Levenson AS, Jordan VC (1997) MCF-7: the first hormone-responsive breast cancer cell line. Cancer Res 57(15):3071–3078

    CAS  PubMed  Google Scholar 

  2. Kirikoshi H, Katoh M (2002) Expression of WNT7A in human normal tissues and cancer, and regulation of WNT7A and WNT7B in human cancer. Int J Oncol 21(4):895–900

    CAS  PubMed  Google Scholar 

  3. Mehta RG, Murillo G, Naithani R, Peng X (2010) Cancer chemoprevention by natural products: how far have we come? Pharm Res 27(6):950–961

    Article  CAS  PubMed  Google Scholar 

  4. Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG (2017) Sustain Mater Technol 13:18–23

    CAS  Google Scholar 

  5. Kosha A, Farahbakhsh M, Hakimi S, Abdollahi L, Golzari M, Seif M (2010) Epidemiology of cancer in west Azarbaijan in 2007. Med J Tabriz Univ Med Sci 32(4):74–79 ([Farsi])

    Google Scholar 

  6. Shahneh FZ, Valiyari S, Azadmehr A, Hajiaghaee R, Yaripour S, Bandehagh A et al (2013) Inhibition of growth and induction of apoptosis in fibrosarcoma cell lines by Echinophora platyloba DC: In Vitro Analysis. Adv Pharmacol Sci 2013:512931

    PubMed  PubMed Central  Google Scholar 

  7. He J, Feizipour S, Veisi H, Amirpour Amraii S, Zangeneh MM, Hemmati H (2024) Panax ginseng root aqueous extract mediated biosynthesis of silver nanoparticles under ultrasound condition and investigation of the treatment of human lung adenocarcinoma with following the PI3K/AKT/mTOR signaling pathway. Inorg Chem Commun 160:112021

    Article  CAS  Google Scholar 

  8. Rajeshkumar S (2016) Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 14(1):195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728

    Article  CAS  PubMed  Google Scholar 

  11. Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C et al (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine 5:136–142

    Article  CAS  PubMed  Google Scholar 

  12. Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM (2010) Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 55:3045–3059

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S et al (2008) Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Invest Med 31:E160

    Article  CAS  PubMed  Google Scholar 

  14. Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S et al (2008) Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4:1537–1543

    Article  CAS  PubMed  Google Scholar 

  15. Roa W, Zhang X, Guo L, Shaw A, Hu X, Xiong Y et al (2009) Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology 20:375101

    Article  PubMed  Google Scholar 

  16. Chien CC, Wang CH, Hua TE, Tseng PY, Yang TY, Hwu Y et al (2007) Synchrotron X-ray synthesized gold nanoparticles for tumour therapy, synchrotron radiation instrumentation: ninth international conference, 1908–1911

  17. Vaidya JS, Joseph DJ, Tobias JS, Bulsara M, Wenz F, Saunders C et al (2010) Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): an international, prospective, randomised, non-inferiority phase 3 trial. Lancet 376:91–102

    Article  PubMed  Google Scholar 

  18. Morton GC (2005) The emerging role of high-dose-rate brachytherapy for prostate cancer. Clin Oncol 17:219–227

    Article  CAS  Google Scholar 

  19. Al-Azmi A, Keshipour S (2020) Dimaval as an efficient ligand for binding Ru(III) on cross-linked chitosan aerogel: synthesis, characterization and catalytic investigation. Cellulose 27:895–904

    Article  CAS  Google Scholar 

  20. Nemati M, Tamoradi T, Veisi H (2019) Immobilization of Gd(III) complex on Fe3O4: a novel and recyclable catalyst for synthesis of tetrazole and S-S coupling. Polyhedron 167:75–84

    Article  CAS  Google Scholar 

  21. Azimi F, Poursattar Marjani A, Keshipour S (2011) Fe(II)-phthalocyanine supported on chitosan aerogel as a catalyst for oxidation of alcohols and alkyl arenes. Sci Rep 11:23769

    Article  Google Scholar 

  22. Eyvari-Ashnak F, Keshipour S (2023) Amines functionalities on chitosan boasting photocatalytic activity of cobalt(II)-phthalocyanine in water-splitting. Mol Catal 534:112820

    Article  CAS  Google Scholar 

  23. Cai Y, Karmakar B, Salem MA, Alzahrani AA, Bani-Fwaz MZ, Oyouni AAA, Al-Amer O, Batiha G (2022) Ag NPs supported chitosan-agarose modified Fe3O4 nanocomposite catalyzed synthesis of indazolo[2,1-b]phthalazines and anticancer studies against liver and lung cancer cells. Int J Biol Macromol 208:20–28

    Article  CAS  PubMed  Google Scholar 

  24. Shi D, Karmakar B, Osman HH, El-kott AF, Morsy K, Abdel-Daim MM (2022) Arab J Chem 15:103471

    Article  CAS  Google Scholar 

  25. Kesipour S, Adak K (2017) Magnetic d-penicillamine-functionalized cellulose as a new heterogeneous support for cobalt(II) in green oxidation of ethylbenzene to acetophenone. Appl Organomet Chem 31:e3774

    Article  Google Scholar 

  26. Inaloo ID, Majnooni S (2019) A Fe3O4@SiO2/Schiff base/Pd complex as an efficient heterogeneous and recyclable nanocatalyst for one-pot domino synthesis of carbamates and unsymmetrical ureas. Eur J Org Chem 37:6359–6368

    Article  Google Scholar 

  27. Inaloo ID, Majnooni S, Eslahi H, Esmaeilpour M (2020) Efficient nickel(II) immobilized on EDTA-modified Fe3O4@SiO2 nanospheres as a novel nanocatalyst for amination of heteroaryl carbamates and sulfamates through the cleavage of C-O bond. Mol Catal 492:110915

    Article  Google Scholar 

  28. Sardarian AR, Zangiabadi M, Inaloo ID (2016) Fe3O4@SiO2/Schiff base/Pd complex as an efficient heterogeneous and recyclable nanocatalyst for chemoselective N-arylation of O-alkyl primary carbamates. RSc Adv 6(94):92057–92064

    Article  CAS  Google Scholar 

  29. Inaloo ID, Majnooni S, Eslahi H, Esmaeilpour M (2020) Air-stable Fe3O4@SiO2-EDTA-Ni(0) as an efficient recyclable magnetic nanocatalyst for effective Suzuki-Miyaura and heck cross-coupling via aryl sulfamates and carbamates. Appl Organomet Chem 34(8):e5662

    Article  Google Scholar 

  30. Sadeghzadeh SM, Zhiani R, Khoobi M, Emrani S (2018) Synthesis of 3-Acyloxylindolines under mild conditions using tripolyphosphate-grafted KCC-1-NH2. Micropor Mesopor Mater 257:147–153

    Article  CAS  Google Scholar 

  31. Zhiani R, Saadati SM, Zahedifar M, Sadeghzadeh SM (2018) Synthesis of new class of copper(II) complex-based FeNi3/KCC-1 for the N-formylation of amines using dihydrogen and carbon dioxide. Catal Lett 148:2487–2500

    Article  CAS  Google Scholar 

  32. Hassankhani A, Sadeghzadeh SM, Zhiani R (2018) C-C and C–H coupling reactions by Fe3O4/KCC-1/APTPOSS supported palladium-salen-bridged ionic networks as a reusable catalyst. RSc Adv 8(16):8761–8769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fan L, Wang J, Sadeghzadeh SM, Zhiani R, Shahroudi M, Amarloo F (2019) Co-immobilization of laccase and TEMPO onto glycidyloxypropyl functionalized fibrous phosphosilicate nanoparticles for fixing CO2 into β-oxopropylcarbamatesin. Catal Lett 149:3465–3475

    Article  CAS  Google Scholar 

  34. Sadeghzadeh SM (2016) Ionic liquid-modified fibrous silica microspheres loaded with PbS nanoparticles and their enhanced catalytic activity and reusability for the hydrogen production by selective dehydrogenation of formic acid. J Mol Liq 223:267–273

    Article  CAS  Google Scholar 

  35. Sadeghzadeh SM (2015) Ultrasound-promoted green approach for the synthesis of thiazoloquinolines using gold (III) dipyridine complex immobilized on SBA-15 as nano catalysts at room temperature. RSC Adv 5(84):68947–68952

    Article  CAS  Google Scholar 

  36. Zhan-Jiang Z, Wang D, Xu Z, Xu LW (2015) Synthesis of bi-and bis-1, 2, 3-triazoles by copper-catalyzed Huisgencycloaddition: a family of valuable products by click chemistry. Beilstein J Org Chem 11:2557

    Article  Google Scholar 

  37. Jigpei H, Hu H, Zhang M, Hu X, Chen M, Chen D, Liu J, Xiao G, Wang Y, Wen Z (2017) A mini review of the synthesis of poly-1, 2, 3-triazole-based functional materials. RSC Adv 12:2281

    Google Scholar 

  38. Weiguo W, Peng X, Wei F, Tung CH, Xu Z (2016) Copper (I)-catalyzed interrupted click reaction: synthesis of diverse 5-hetero-functionalized triazoles. Ang Chem 128:659

    Article  Google Scholar 

  39. Lahoucine B, Ayouchia HB, Anane H, Pascual-Álvarez A, De Munno G, Julve M, Stiriba SE (2019) A reusable polymer-supported copper (I) catalyst for triazole click reaction on water: an experimental and computational study. Appl Organomet Chem 33:4669

    Article  Google Scholar 

  40. Hein JE, Fokin VV (2010) Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper (I) acetylides. Chem Soc Rev 39:1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saeidian H, Vahdati S, Mirjafary Z, Eftekhari B (2018) Immobilized copper nanoparticles on nitrogen-rich porous activated carbon from egg white biomass: a robust hydrophilic–hydrophobic balance catalyst for click reaction. RSC Adv 8:38801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH, McRee DE, Elder JH, Stout CD, Torbett BE (2008) A copper (I)-catalyzed 1, 2, 3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem 51:6263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Struthers H, Mindt TL, Schibli R (2010) Metal chelating systems synthesized using the copper (I) catalyzed azide-alkyne cycloaddition. Dalton trans 39:675

    Article  CAS  PubMed  Google Scholar 

  44. Cornelissen JP, Van Diemen JH, Groeneveld LR, Haasnoot JG, Spek AL, Reedijk J (1992) Synthesis and properties of isostructural transition-metal (copper, nickel, cobalt, and iron) compounds with 7, 7’, 8, 8’-tetracyanoquinodimethanide (1-) in an unusual monodentate coordination mode: crystal structure of bis (3, 5-bis (pyridin-2-yl)-4-amino-1, 2, 4-triazole) bis (7, 7’, 8, 8’-tetracyanoquinodimethanido) copper (II). Inorg Chem 31:198

    Article  CAS  Google Scholar 

  45. Gonzalez-Olvera R, Urquiza-Castro C, Lara V, Santillan R, Morales-Serna J (2016) Cu–Al mixed oxide catalysts for azide–alkyne 1, 3-cycloaddition in ethanol–water. RSC Adv 6:63660

    Article  CAS  Google Scholar 

  46. Hosseinnejad T, Fattahi B, Heravi MM (2015) Computational studies on the regioselectivity of metal-catalyzed synthesis of 1, 2, 3 triazoles via click reaction: a review. J Mol Model 21:264

    Article  PubMed  Google Scholar 

  47. Estela H, Nicasio MC, Pérez PJ (2015) Copper-catalysedazide–alkyne cycloadditions (CuAAC): an update. Org biomol Chem 13:9528–9550

    Article  Google Scholar 

  48. Leilan AH, Babazadeh M, Hekmati M, Ghasemi E (2022) Inorg Chem Commun 141:109566

    Article  Google Scholar 

  49. Meng M, Xue D (2020) Green immobilized Ag NPs over magnetic Fe3O4 NPs using Pomegranate juice induces apoptosis via P53 and signal transducer and activator of transcription 3 signaling pathways in human gastric cancer cells. Inorg Chem Commun 146:110159

    Article  Google Scholar 

  50. Nasrollahzadeh M, Ghorbannezhad F, Sajadi SM (2019) Biosynthesis of Pd/MnO2 nanocomposite using Solanum melongena plant extract and its application for the one-pot synthesis of 5-substituted 1H-tetrazoles from aryl halides. Appl Organomet Chem 33:e4698

    Article  Google Scholar 

  51. Sajjadi M, Nasrollahzadeh M, Ghafuri H, Baran T, Orooji Y, Baran NY, Shokouhimehr M (2022) Modified chitosan-zeolite supported Pd nanoparticles: A reusable catalyst for the synthesis of 5-substituted-1H-tetrazoles from aryl halides. Int J Biol Macromol 209:1573–1585

    Article  CAS  PubMed  Google Scholar 

  52. Alterman M, Hallberg A (2000) Fast microwave-assisted preparation of aryl and vinyl nitriles and the corresponding tetrazoles from organo-halides. J Org Chem 65:7984

    Article  CAS  PubMed  Google Scholar 

  53. Prajapti SK, Nagarsenkar A, Babu BN (2014) An efficient synthesis of 5-substituted 1H-tetrazoles via B(C6F5)3 catalyzed [3+2] cycloaddition of nitriles and sodium azide. Tetrahedron Lett 55(24):3507

    Article  CAS  Google Scholar 

  54. Coca A, Turek E (2014) Synthesis of 5-substituted 1H-tetrazoles catalyzed by ytterbium triflate hydrate. Tetrahedron Lett 55(16):2718

    Article  CAS  Google Scholar 

  55. Jin T, Kitahara F, Kamijo S, Yamamoto Y (2008) Copper-catalyzed synthesis of 5-substituted 1H-tetrazoles via the [3+2] cycloaddition of nitriles and trimethylsilyl azide. Tetrahedron Lett 49:2824

    Article  CAS  Google Scholar 

  56. Demko ZP, Sharpless KB (2001) Preparation of 5-substituted 1H-tetrazoles from nitriles in water. J Org Chem 66:7945

    Article  CAS  PubMed  Google Scholar 

  57. Zhu Y, Ren Y, Cai C (2009) One-pot synthesis of 5-substituted 1H-tetrazoles from aryl bromides with potassium hexakis(cyano-κC)ferrate(4−) (K4[Fe(CN)6]) as cyanide source. Helvetica Chim Acta 92:171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YS, BW, CZ: Visualization, Writing original draft, Formal analysis. YS, BW: Funding acquisition, Methodology, Supervision. BW, CZ: Writing original draft, Formal analysis, Writing-review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chunyang Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with other people or organizations that could affect this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Wu, B. & Zhang, C. Gold Nanoparticles Decorated Chitosan-Agarose Modified Magnetic Nanocomposite: Catalytic Application for the Preparation of Tetrazoles and Biological Evaluation for the Treatment of Lung Carcinoma. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03252-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03252-2

Keywords

Navigation