Skip to main content
Log in

A Review of Recent Advances in the Photocatalytic Activity of Protein and Polysaccharide-Based Nanocomposite Packaging Films: Antimicrobial, Antioxidant, Mechanical, and Strength Properties

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the past decades, the use of plastic films based on synthetic polymers increased rapidly due to features such as ease of use, and reasonable cost. Today, environmental problems such as the non-biodegradability of synthetic polymers on the one hand, as well as problems caused by the safety of food packaged with synthetic polymers on the other hand, have led to the development of research on the use of natural polymers in the production of biodegradable films. One solution is the application of nanotechnology in the production of nanocomposite films to solve the practical problems of biodegradable films based on protein and polysaccharide biopolymers. The production of nanocomposite films with photocatalytic activities, in addition to having antioxidant and antimicrobial benefits of bioactive compounds, increases structural strength and it also affects the mechanical characteristics and physical and chemical properties of edible films. The aim of this review is to overview the general and current scenario of protein and polysaccharide based nanocomposite films with photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adeel M, Saeed M, Khan I, Muneer M, Akram N (2021) Synthesis and characterization of Co–ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange. ACS Omega 6(2):1426–1435. https://doi.org/10.1021/acsomega.0c05092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ameta R, Solanki MS, Benjamin S, Ameta SC (2018) Advanced oxidation processes for waste water treatment. Photocatalysis. Academic Press, Cambridge, pp 135–175. https://doi.org/10.1016/B978-0-12-810499-6.00006-1

    Chapter  Google Scholar 

  3. Amiri S, Ghasem-Esmati F, Almasi H, Nabizadeh F, Rezazad-Bari L, Khaneghah AM (2023) Opopanax gum and essential oil-based antimicrobial film reinforced with bismuth oxide nanoparticles: Production, characterization, and application in the storage of quail fillets. Int J Biol Macromol 229:282–294. https://doi.org/10.1016/j.ijbiomac.2022.12.255

    Article  CAS  PubMed  Google Scholar 

  4. Anaya-Esparza LM, Villagrán-de la Mora Z, Ruvalcaba-Gómez JM, Romero-Toledo R, Sandoval-Contreras T, Aguilera-Aguirre S, Pérez-Larios A (2020) Use of titanium dioxide (TiO2) nanoparticles as reinforcement agent of polysaccharide-based materials. Processes 8(11):1395. https://doi.org/10.3390/pr8111395

    Article  CAS  Google Scholar 

  5. Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN (2020) The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int J Biol Macromol 157:743–751. https://doi.org/10.1016/j.ijbiomac.2019.11.244

    Article  CAS  PubMed  Google Scholar 

  6. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    Article  CAS  Google Scholar 

  7. Balakrishnan G, Velavan R, Batoo KM, Raslan EH (2020) Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results in Physics 16:103013. https://doi.org/10.1016/j.rinp.2020.103013

    Article  Google Scholar 

  8. BArskA A, WyrWA J (2017) Innovations in the food packaging market–intelligent packaging–a review. Czech J Food Sci 35(1):1–6. https://doi.org/10.17221/268/2016-CJFS

    Article  CAS  Google Scholar 

  9. Bott J, Störmer A, Franz R (2014) Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs. Food Additives & Contaminants: Part A 31(10):1769–1782

    Article  CAS  Google Scholar 

  10. Chawla R, Sivakumar S, Kaur H (2021) Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements-a review. Carbohydrate Polymer Technologies and Applications 2:100024. https://doi.org/10.1016/j.carpta.2020.100024

    Article  CAS  Google Scholar 

  11. Cheng Y, Sun C, Zhai X, Zhang R, Zhang S, Sun C, Hou H (2021) Effect of lipids with different physical state on the physicochemical properties of starch/gelatin edible films prepared by extrusion blowing. Int J Biol Macromol 185:1005–1014. https://doi.org/10.1016/j.ijbiomac.2021.06.203

    Article  CAS  PubMed  Google Scholar 

  12. Dadigala R, Bandi R, Gangapuram BR, Guttena V (2019) Construction of in situ self-assembled FeWO4/gC3N4 nanosheet heterostructured Z-scheme photocatalysts for enhanced photocatalytic degradation of rhodamine B and tetracycline. Nanoscale Advances 1(1):322–333. https://doi.org/10.1039/C8NA00041G

    Article  CAS  PubMed  Google Scholar 

  13. Dai L, Zhang J, Cheng F (2019) Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. Int J Biol Macromol 132:897–905. https://doi.org/10.1016/j.ijbiomac.2019.03.197

    Article  CAS  PubMed  Google Scholar 

  14. Dash KK, Ali NA, Das D, Mohanta D (2019) Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int J Biol Macromol 139:449–458. https://doi.org/10.1016/j.ijbiomac.2019.07.193

    Article  CAS  PubMed  Google Scholar 

  15. Díaz-Montes E, Castro-Muñoz R (2021) Edible films and coatings as food-quality preservers: An overview. Foods 10(2):249. https://doi.org/10.3390/foods10020249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong P, Hou G, Xi X, Shao R, Dong F (2017) WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ Sci Nano 4(3):539–557. https://doi.org/10.1039/C6EN00478D

    Article  CAS  Google Scholar 

  17. Dubey, N. K., & Dubey, R. (2020). Edible films and coatings: An update on recent advances. In Biopolymer-based formulations (pp. 675–695). Elsevier, Amsterdam, pp 675–695. https://doi.org/10.1016/B978-0-12-816897-4.00027-8.

  18. Dutta V, Sharma S, Raizada P, Thakur VK, Khan AAP, Saini V, Singh P (2021) An overview on WO3 based photocatalyst for environmental remediation. J Environ Chem Eng 9(1), 105018

    Article  CAS  Google Scholar 

  19. European Commission (2007). Directive 2007/19/EC. Official Journal of the European

  20. Commission E (2011) Commission Regulation (EC) No. 10/2011 on plastic materials and articles intended to come into contact with food. Official Journal of the European Union, L 12:1–89

    Google Scholar 

  21. Ezati P, Riahi Z, Rhim JW (2022) CMC-based functional film incorporated with copper-doped TiO2 to prevent banana browning. Food Hydrocolloids 122:107104. https://doi.org/10.1016/j.foodhyd.2021.107104Get

    Article  CAS  Google Scholar 

  22. Fathi N, Almasi H, Pirouzifard MK (2019) Sesame protein isolate based bionanocomposite films incorporated with TiO2 nanoparticles: study on morphological, physical and photocatalytic properties. Polym Test 77:105919

  23. Feng Z, Li L, Wang Q, Wu G, Liu C, Jiang B, Xu J (2019) Effect of antioxidant and antimicrobial coating based on whey protein nanofibrils with TiO2 nanotubes on the quality and shelf life of chilled meat. Int J Mol Sci 20(5):1184. https://doi.org/10.3390/ijms20051184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Firouz MS, Mohi-Alden K, Omid M (2021) A critical review on intelligent and active packaging in the food industry: Research and development. Food Res Int 141:110113. https://doi.org/10.1016/j.foodres.2021.110113

    Article  CAS  Google Scholar 

  25. Ghoshal, G. (2018). Recent trends in active, smart, and intelligent packaging for food products. In Food packaging and preservation. Academic Press, Cambridge, pp 343–374  https://doi.org/10.1016/B978-0-12-811516-9.00010-5.

  26. Goktas S, Goktas A (2021) A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J Alloy Compd 863:158734. https://doi.org/10.1016/j.jallcom.2021.158734

    Article  CAS  Google Scholar 

  27. Guo W, Luo H, Jiang Z, Fang D, Chi J, Shangguan W, Lee AF (2022) Ge-doped cobalt oxide for electrocatalytic and photocatalytic water splitting. ACS Catal 12(19):12000–12013. https://doi.org/10.1021/acscatal.2c03730

    Article  CAS  Google Scholar 

  28. Hammam AR (2019) Technological, applications, and characteristics of edible films and coatings: A review. SN Applied Sciences 1(6):1–11. https://doi.org/10.1007/s42452-019-0660-8

    Article  CAS  Google Scholar 

  29. Han W, Yu Y, Li N, Wang L (2011) Application and safety assessment for nano composite materials in food packaging. Chin Sci Bull 56(12):1216–1225

    Article  Google Scholar 

  30. Hassan B, Chatha SAS, Hussain AI, Zia KM, Akhtar N (2018) Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int J Biol Macromol 109:1095–1107

    Article  CAS  PubMed  Google Scholar 

  31. Huang JY, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 45(2):187–199

    Article  CAS  Google Scholar 

  32. Huang Z, Ding J, Yang X, Liu H, Song P, Guo Y, Zhan W (2022) Highly efficient oxidation of propane at low temperature over a Pt-Based catalyst by optimization support. Environ Sci Technol 56(23):17278–17287

    Article  CAS  PubMed  Google Scholar 

  33. Hunge YM, Yadav AA, Dhodamani AG, Suzuki N, Terashima C, Fujishima A, Mathe VL (2020) Enhanced photocatalytic performance of ultrasound treated GO/TiO2 composite for photocatalytic degradation of salicylic acid under sunlight illumination. Ultrason Sonochem 61:104849. https://doi.org/10.1016/j.ultsonch.2019.104849

    Article  CAS  PubMed  Google Scholar 

  34. Jahantigh F (2019) Edible film based on Vicia faba shell gum, nano silver and Helichrysum arenarium essence. Nutrition & Food Science 50(2):280–287. https://doi.org/10.1108/NFS-04-2019-0136

    Article  Google Scholar 

  35. Janjarasskul T, Suppakul P (2018) Active and intelligent packaging: The indication of quality and safety. Crit Rev Food Sci Nutr 58(5):808–831. https://doi.org/10.1080/10408398.2016.1225278

    Article  PubMed  Google Scholar 

  36. Jeevahan JJ, Chandrasekaran M, Venkatesan SP, Sriram V, Joseph GB, Mageshwaran G, Durairaj RB (2020) Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends Food Sci Technol 100:210–222. https://doi.org/10.1016/j.tifs.2020.04.014

    Article  CAS  Google Scholar 

  37. Jin B, Li X, Zhou X, Xu X, Jian H, Li M, Yan S (2017) Fabrication and characterization of nanocomposite film made from a jackfruit filum polysaccharide incorporating TiO2 nanoparticles by photocatalysis. RSC Adv 7(28):16931–16937

    Article  CAS  Google Scholar 

  38. Kar A, Olszowka J, Sain S, Sloman SRI, Montes O, Fernandez A, Wheatley AE (2019) Morphological effects on the photocatalytic properties of SnO2 nanostructures. J Alloys Compd 810:151718

    Article  CAS  Google Scholar 

  39. Kenfoud H, Nasrallah N, Baaloudj O, Derridj F, Trari M (2022) Enhanced photocatalytic reduction of Cr (VI) by the novel hetero-system BaFe2O4/SnO2. J Phys Chem Solids 160:110315. https://doi.org/10.1016/j.jpcs.2021.110315

    Article  CAS  Google Scholar 

  40. Khakpour F, Pirsa S, Amiri S (2023) Modified Starch/CrO/Lycopene/Gum Arabic Nanocomposite Film: Preparation, Investigation of Physicochemical Properties and Ability to Use as Nitrite Kit. J Polym Environ 31:3875–3893. https://doi.org/10.1007/s10924-023-02856-4

    Article  CAS  Google Scholar 

  41. Khodaei SM, Gholami-Ahangaran M, Karimi Sani I, Esfandiari Z, Eghbaljoo H (2023) Application of intelligent packaging for meat products: A systematic review. Veterinary Medicine and Science 9(1):481–493. https://doi.org/10.1002/vms3.1017

    Article  PubMed  Google Scholar 

  42. Kong X, Liu X, Zheng Y, Chu PK, Zhang Y, Wu S (2021) Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Mater Sci Eng R Rep 145:100610. https://doi.org/10.1016/j.mser.2021.100610

    Article  Google Scholar 

  43. Kumar L, Ramakanth D, Akhila K, Gaikwad KK (2021) Edible films and coatings for food packaging applications: A review. Environ Chem Lett. https://doi.org/10.1007/s10311-021-01339-z

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kuswandi B (2020) Active and intelligent packaging, safety, and quality controls. Fresh-cut Fruits Veget. https://doi.org/10.1016/B978-0-12-816184-5.00012-4

    Article  Google Scholar 

  45. Li S, Zhao S, Qiang S, Chen G, Chen Y, Chen Y (2018) A novel zein/poly (propylene carbonate)/nano-TiO2 composite films with enhanced photocatalytic and antibacterial activity. Process Biochem 70:198–205. https://doi.org/10.1016/j.porgcoat.2021.106339

    Article  CAS  Google Scholar 

  46. Liao M, Su L, Deng Y, Xiong S, Tang R, Wu Z, Gong D (2021) Strategies to improve WO3-based photocatalysts for wastewater treatment: a review. J Mater Sci 56(26):14416–14447. https://doi.org/10.1007/s10853-021-06202-8

    Article  CAS  Google Scholar 

  47. Liao M, Wang T, Zuo T, Meng L, Yang M, Chen YX, Xie Y (2021) Design and solvothermal synthesis of polyoxometalate-Based Cu (II)-Pyrazolate photocatalytic compounds for solar-light-driven hydrogen evolution. Inorg Chem 60(17):13136–13149. https://doi.org/10.1021/acs.inorgchem.1c01540

    Article  CAS  PubMed  Google Scholar 

  48. Lin D, Zheng Y, Huang Y, Ni L, Zhao J, Huang C, Xing B (2020) Investigation of the structural, physical properties, antioxidant, and antimicrobial activity of chitosan-nano-silicon aerogel composite edible films incorporated with okara powder. Carbohydr. Polym 250, 116842

    Article  CAS  PubMed  Google Scholar 

  49. Liu C, Lü H, Yu C, Wu X, Wang P (2019) Hydrothermal-assisted microemulsion synthesis of FeWO4 nanorods and their superior visible-light-driven photocatalytic activity. Mater Lett 257:126707. https://doi.org/10.1016/j.matlet.2019.126707

    Article  CAS  Google Scholar 

  50. Malik GK, Mitra J (2021) Zinc oxide nanoparticle synthesis, characterization, and their effect on mechanical, barrier, and optical properties of hpmc-based edible film. Food Bioprocess Technol 14(3):441–456. https://doi.org/10.1007/s11947-020-02566-y

    Article  CAS  Google Scholar 

  51. Martínez-Molina EC, Freile-Pelegrín Y, Ovando-Chacón SL, Gutiérrez-Miceli FA, Ruiz-Cabrera MÁ, Grajales-Lagunes A, Abud-Archila M (2022) Development and characterization of alginate-based edible film from Sargassum fluitans incorporated with silver nanoparticles obtained by green synthesis. J Food Meas Charact 16(1):126–136. https://doi.org/10.1007/s11694-021-01156-6

    Article  Google Scholar 

  52. Mellinas AC, Jiménez A, Garrigós MC (2020) Pectin-Based Films with Cocoa Bean Shell Waste Extract and ZnO/Zn-NPs with Enhanced Oxygen Barrier. Ultraviolet Screen and Photocatalytic Properties Foods 9(11):1572. https://doi.org/10.3390/foods9111572

    Article  CAS  PubMed  Google Scholar 

  53. Mellinas-Ciller AC, Jiménez A, Garrigós MDC (2020) Pectin-Based Films with Cocoa Bean Shell Waste Extract and ZnO/Zn-NPs with Enhanced Oxygen Barrier. Ultraviolet Screen Photocatal Prop. https://doi.org/10.3390/foods9111572

    Article  Google Scholar 

  54. Meng, X., Eluagwule, B., Wang, M., Wang, L., & Zhang, J. (2020). Solar photocatalysis for environmental remediation. In Handbook of smart photocatalytic materials. Elsevier, Amsterdam, pp 183–195. https://doi.org/10.1016/B978-0-12-819049-4.00013-1.

  55. Mesgari M, Aalami AH, Sahebkar A (2021) Antimicrobial activities of chitosan/titanium dioxide composites as a biological nanolayer for food preservation: A review. Int J Biol Macromol 176:530–539. https://doi.org/10.1016/j.ijbiomac.2021.02.099

    Article  CAS  PubMed  Google Scholar 

  56. Milani JM, Nemati A (2022) Lipid-based edible films and coatings: a review of recent advances and applications. J Packag Technol Res. https://doi.org/10.1007/s41783-021-00130-3

    Article  Google Scholar 

  57. Mohamed SA, El-Sakhawy M, El-Sakhawy MAM (2020) Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohyd Polym 238:116178. https://doi.org/10.1016/j.carbpol.2020.116178

    Article  CAS  Google Scholar 

  58. Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10(2):52–68

  59. Pirsa S, Sani IK, Mirtalebi SS (2022) Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging. Food Packag Shelf Life 31:100789. https://doi.org/10.1016/j.fpsl.2021.100789

    Article  CAS  Google Scholar 

  60. Priya R, Stanly S, Kavitharani T, Faruq M, Suresh S (2020) Highly effective photocatalytic degradation of methylene blue using PrO2–MgO nanocomposites under UV light. Optik 206:164318. https://doi.org/10.1016/j.ijleo.2020.164318

    Article  CAS  Google Scholar 

  61. Qu L, Chen G, Dong S, Huo Y, Yin Z, Li S, Chen Y (2019) Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Ind Crops Prod 130:450–458. https://doi.org/10.1016/j.indcrop.2018.12.093

    Article  CAS  Google Scholar 

  62. Rasul NH, Asdagh A, Pirsa S, Ghazanfarirad N, Sani IK (2022) Development of antimicrobial/antioxidant nanocomposite film based on fish skin gelatin and chickpea protein isolated containing Microencapsulated Nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life. Materials Research Express 9(2):025306

    Article  Google Scholar 

  63. Rezaei M, Pirsa S, Chavoshizadeh S (2020) Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J Inorg Organomet Polym Mater 30(7):2654–2665. https://doi.org/10.1007/s10904-019-01407-6

    Article  CAS  Google Scholar 

  64. Ribeiro AM, Estevinho BN, Rocha F (2021) Preparation and incorporation of functional ingredients in edible films and coatings. Food Bioprocess Technol 14(2):209–231. https://doi.org/10.1007/s11947-020-02528-4

    Article  CAS  Google Scholar 

  65. Rodríguez GM, Sibaja JC, Espitia PJ, Otoni CG (2020) Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food Hydrocolloids 103:105630. https://doi.org/10.1016/j.foodhyd.2019.105630

    Article  CAS  Google Scholar 

  66. Rouzafzay F, Shidpour R, Al-Abri MZ, Qaderi F, Ahmadi A, Myint MTZ (2020) Graphene@ ZnO nanocompound for short-time water treatment under sun-simulated irradiation: Effect of shear exfoliation of graphene using kitchen blender on photocatalytic degradation. J Alloy Compd 829:154614. https://doi.org/10.1016/j.jallcom.2020.154614

    Article  CAS  Google Scholar 

  67. Roy S, Rhim JW (2020) Preparation of carbohydrate-based functional composite films incorporated with curcumin. Food Hydrocolloids 98:105302. https://doi.org/10.1016/j.foodhyd.2019.105302

    Article  CAS  Google Scholar 

  68. Roy S, Rhim JW (2021) Preparation of pectin/agar-based functional films integrated with zinc sulfide nano petals for active packaging applications. Colloids Surf, B 207:111999. https://doi.org/10.1016/j.colsurfb.2021.111999

    Article  CAS  Google Scholar 

  69. Sallak N, Moghanjoughi AM, Ataee M, Anvar A, Golestan L (2021) Antimicrobial biodegradable film based on corn starch/Satureja khuzestanica essential oil/Ag–TiO2 nanocomposites. Nanotechnology 32(40):405703

    Article  CAS  Google Scholar 

  70. Sani IK, Alizadeh M (2022) Isolated mung bean protein-pectin nanocomposite film containing true cardamom extract microencapsulation/CeO2 nanoparticles/graphite carbon quantum dots: Investigating fluorescence, photocatalytic and antimicrobial properties. Food Packag Shelf Life 33:100912. https://doi.org/10.1016/j.fpsl.2022.100912

    Article  CAS  Google Scholar 

  71. Sani IK, Geshlaghi SP, Pirsa S, Asdagh A (2021) Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids 117:106719. https://doi.org/10.1016/j.foodhyd.2021.106719

    Article  CAS  Google Scholar 

  72. Sani IK, Marand SA, Alizadeh M, Amiri S, Asdagh A (2021) Thermal, mechanical, microstructural and inhibitory characteristics of sodium caseinate based bioactive films reinforced by ZnONPs/encapsulated Melissa officinalis essential oil. J Inorg Organomet Polym Mater 31(1):261–271. https://doi.org/10.1007/s10904-020-01777-2

    Article  CAS  Google Scholar 

  73. Sani IK, Masoudpour-Behabadi M, Sani MA, Motalebinejad H, Juma AS, Asdagh A, Mohammadi F (2022a) Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem. https://doi.org/10.1016/j.foodchem.2022.134964

    Article  Google Scholar 

  74. Sani IK, Pirsa S, Tağı Ş (2019) Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polym Testing 79:106004. https://doi.org/10.1016/j.polymertesting.2019.106004

    Article  CAS  Google Scholar 

  75. Schmidt B, Katiyar V, Plackett D, Larsen EH, Gerds N, Koch CB, Petersen JH (2011) Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films. Food Additives & Contaminants: Part A 28(7):956–966

    Article  CAS  Google Scholar 

  76. Shendurse A, Gopikrishna G, Patel AC, Pandya AJ (2018) Milk protein based edible films and coatings–preparation, properties and food applications. J Nutr Health Food Eng 8(2):219–226

    Google Scholar 

  77. Shi L, Ma Z, Qu W, Zhou W, Deng Z, Zhang H (2021) Hierarchical Z-scheme Bi2S3/CdS heterojunction: Controllable morphology and excellent photocatalytic antibacterial. Appl Surf Sci 568:150923. https://doi.org/10.1016/j.apsusc.2021.150923

    Article  CAS  Google Scholar 

  78. Tang S, Wang Z, Li P, Li W, Li C, Wang Y, Chu PK (2018) Degradable and photocatalytic antibacterial Au-TiO2/sodium alginate nanocomposite films for active food packaging. Nanomaterials 8(11):930. https://doi.org/10.3390/nano8110930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang XY, Liu J, Chen PB, Wu CC, Li XJ, Pan YM, Liang Y (2023) Effective N-formylation of Amines with CO2 in Anaerobic Fermentation Gas Catalyzed by Triply Synergistic Effect of Ionic Porous Organic Polymer. ChemCatChem. https://doi.org/10.1002/cctc.202201351

    Article  Google Scholar 

  80. Thiagamani SMK, Rajini N, Siengchin S, Rajulu AV, Hariram N, Ayrilmis N (2019) Influence of silver nanoparticles on the mechanical, thermal and antimicrobial properties of cellulose-based hybrid nanocomposites. Compos B Eng 165:516–525. https://doi.org/10.1016/j.compositesb.2019.02.006

    Article  CAS  Google Scholar 

  81. Wang Z, Dai L, Yao J, Guo T, Hrynsphan D, Tatsiana S, Chen J (2021) Improvement of Alcaligenes sp. TB performance by Fe-Pd/multi-walled carbon nanotubes: Enriched denitrification pathways and accelerated electron transport. Bioresource Technology 327:124785

    Article  CAS  PubMed  Google Scholar 

  82. Wu R, Tan Y, Meng F, Zhang Y, Huang YX (2022) PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane distillation. Desalination 540:116013. https://doi.org/10.1016/j.desal.2022.116013

    Article  CAS  Google Scholar 

  83. Xie Q, Liu G, Zhang Y, Yu J, Wang Y, Ma X (2022) Active edible films with plant extracts: A updated review of their types, preparations, reinforcing properties, and applications in muscle foods packaging and preservation. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2022.2092058

    Article  PubMed  Google Scholar 

  84. Xu C, Anusuyadevi PR, Aymonier C, Luque R, Marre S (2019) Nanostructured materials for photocatalysis. Chem Soc Rev 48(14):3868–3902. https://doi.org/10.1039/C9CS00102F

    Article  CAS  PubMed  Google Scholar 

  85. Xu P, Ding C, Li Z, Yu R, Cui H, Gao S (2023) Photocatalytic degradation of air pollutant by modified nano titanium oxide (TiO2) in a fluidized bed photoreactor: Optimizing and kinetic modeling. Chemosphere 319:137995. https://doi.org/10.1016/j.chemosphere.2023.137995

    Article  CAS  PubMed  Google Scholar 

  86. Xue Q, Liu Y, Zhou Q, Utsumi M, Zhang Z, Sugiura N (2016) Photocatalytic degradation of geosmin by Pd nanoparticle modified WO3 catalyst under simulated solar light. Chem Eng J 283:614–621. https://doi.org/10.1016/j.cej.2015.08.016

    Article  CAS  Google Scholar 

  87. Yildirim S, Röcker B, Pettersen MK, Nilsen-Nygaard J, Ayhan Z, Rutkaite R, Coma V (2018) Active packaging applications for food. Compr Rev Food Sci Food Saf 17(1):165–199. https://doi.org/10.1111/1541-4337.12322

    Article  PubMed  Google Scholar 

  88. Zhang KQ, Deng QF, Luo J, Gong CL, Chen ZG, Zhong W, Wang HF (2021) Multifunctional Ag (I)/CAAA-amidphos complex-catalyzed asymmetric [3+2] cycloaddition of α-substituted acrylamides. ACS Catal 11(9):5100–5107. https://doi.org/10.1021/acscatal.1c00913

    Article  CAS  Google Scholar 

  89. Zhang N, Guo Y, Guo Y, Dai Q, Wang L, Dai S, Zhan W (2023) Synchronously constructing the optimal redox-acidity of sulfate and RuOx Co-modified CeO2 for catalytic combustion of chlorinated VOCs. Chem Eng J 454:140391. https://doi.org/10.1016/j.cej.2022.140391

    Article  CAS  Google Scholar 

  90. Zhang P, Lou XW (2019) Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv Mater 31(29):1900281. https://doi.org/10.1002/adma.201900281

    Article  CAS  Google Scholar 

  91. Zhang X, Zhao Y, Li Y, Zhu L, Fang Z, Shi Q (2020) Physicochemical, mechanical and structural properties of composite edible films based on whey protein isolate/psyllium seed gum. Int J Biol Macromol 153:892–901. https://doi.org/10.1016/j.ijbiomac.2020.03.018

    Article  CAS  PubMed  Google Scholar 

  92. Zheng K, Zhang J, Yang F, Wang W, Li W, Qin C (2022) Properties and biological activity of chitosan-coix seed starch films incorporated with nano zinc oxide and Artemisia annua essential oil for pork preservation. LWT 164:113665. https://doi.org/10.1016/j.lwt.2022.113665

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

IkS Writing—original draft-Equal, Writing—review & editing-Equal ZF Writing—original draft-Equal, Writing. MA Writing—original draft-Equal, Writing SA Writing—original draft-Equal.

Corresponding author

Correspondence to Mohammad Alizadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farajinejad, Z., Sani, I.K., Alizadeh, M. et al. A Review of Recent Advances in the Photocatalytic Activity of Protein and Polysaccharide-Based Nanocomposite Packaging Films: Antimicrobial, Antioxidant, Mechanical, and Strength Properties. J Polym Environ (2023). https://doi.org/10.1007/s10924-023-03159-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03159-4

Keywords

Navigation