Skip to main content
Log in

Strategies to improve WO3-based photocatalysts for wastewater treatment: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

WO3, a visible light reaction catalyst, absorbs light at a wavelength of 470 nm and has many advantages, such as strong stability, long life, non-toxicity, low cost, and suitable band edges. In this review, the photocatalytic mechanism of WO3 in water pollution treatment is introduced, as well as a systematic summary, and some main strategies for improving the photocatalytic activity of WO3 in water pollution treatment are introduced, for example surface and morphology control, synthetic heterojunctions, and doping element. Finally, the main conclusions and prospects of WO3-based photocatalysts are pointed out. It can be expected that this review can provide guidance for designing low-cost, high-efficiency new WO3-based photocatalysts in the process of water pollution treatment and can meet the application prospects of efficient utilization of solar degradation in the field of environmental purification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

VB:

Valence band

CB:

Conduction band

RhB:

Rhodamine B

MB:

Methylene blue

MO:

Methyl orange

ER:

Eosin red

CR:

Congo red

GR:

Graphene

GO:

Graphene oxide

RGO:

Reduced graphene oxide

RhB 6G:

Rhodamine B 6G

TC:

Tetracycline

BF:

Basic fuchsin

IC:

Indigo carmine

SMX:

Sulfamethoxazole

CV:

Crystal violet

AO7 :

Acid orange 7

TOC:

Total organic carbon

SAM:

Sulfanilamide

References

  1. Prashant V.Kamat, Kei Murakoshi, Yuji Wada et al (2000) Chapter 6—Semiconductor nanoparticles. Handbook of Nanostructured Materials and Nanotechnolgy 3: 291–344. https://doi.org/10.1016/B978-012513760-7/50037-X.

  2. Apichon Watcharenwong, Wilaiwan Chanmanee, Norma R. de Tacconi et al (2008) Anodic growth of nanoporous WO3 films: Morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion. J Electroanal Chem 612:112–120. https://doi.org/10.1016/j.jelechem.2007.09.030.

  3. Zheng Q, Durkin DP, Elenewski JE et al (2016) Visible-light-responsive graphitic carbon nitride: rational design and photocatalytic aapplications for water treatment Environ Sci Technol 50:12938–12948. https://doi.org/10.1021/acs.est.6b02579

    Article  CAS  Google Scholar 

  4. Chao Zhen, Tingting Wu, Runze Chen et al. (2019) Strategies for modifying TiO2 bbased electron transport layers to boost Perovskite solar cells. ACS Sustain Chem Eng 7:4586–4618. https://doi.org/10.1021/acssuschemeng.8b06580.

  5. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  6. Gongming Wang, Hanyu Wang, Yichuan Ling et al (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11: 3026–33. https://doi.org/10.1021/nl201766h.

  7. Linsebigler AL, Guangquan Lu, Yates JT (1995) Photocatalysis on TiOn surfaces: principles, mmechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  8. Butler MA, Nasby RD, Quinn RK (1976) Tungsten triodide as an electrode for photoelectrolysis of water. Solid State Commun

  9. Ping-Quan Wang, Yang Bai, Ping-Ya Luo et al (2013) Graphene–WO3 nanobelt composite: elevated conduction band toward photocatalytic reduction of CO2 into hydrocarbon fuels. Catalysis Commun 38: 82–85. https://doi.org/10.1016/j.catcom.2013.04.020.

  10. Senlin Deng, Zebin Yang, Guojun Lv et al (2019) WO3 nanosheets/g-C3N4 nanosheets’ nanocomposite as an effective photocatalyst for degradation of rhodamine B.. Appl Phys A Mater Sci Process 125. https://doi.org/10.1007/s00339-018-2331-9.

  11. Suk Joon Hong, Hwichan Jun, Pramod H. Borse et al (2009) Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int J Hydrogen Energy 34: 3234–3242. https://doi.org/10.1016/j.ijhydene.2009.02.006.

  12. Zheng H, Jian Zhen Ou, Strano MS et al (2011) Nanostructured tungsten oxide—properties, synthesis, and applications. Adv Func Mater 21:2175–2196. https://doi.org/10.1002/adfm.201002477

    Article  CAS  Google Scholar 

  13. Bilal Ahmed, Animesh K. Ojha, Ajeet Singh et al (2018) Well-controlled in-situ growth of 2D WO3 rectangular sheets on reduced graphene oxide with strong photocatalytic and antibacterial properties. J Hazard Mater 347: 266–278. https://doi.org/10.1016/j.jhazmat.2017.12.069.

  14. Gondal MA, Seddigi Z (2006) Laser-induced photo-catalytic removal of phenol using n-type WO3 semiconductor catalyst. Chem Phys Lett 417: 124–127. https://doi.org/10.1016/j.cplett.2005.09.115.

  15. Deng Y, Li Z, Tang R et al (2020) What will happen when microorganisms “meet” photocatalysts and photocatalysis? Environ Sci Nano 7:702–723. https://doi.org/10.1039/c9en01318k

    Article  CAS  Google Scholar 

  16. Tahir MB, Ali S, Rizwan M (2019) A review on remediation of harmful dyes through visible light-driven WO3 photocatalytic nanomaterials. Int J Environ Sci Technol 16:4975–4988. https://doi.org/10.1007/s13762-019-02385-5.

    Article  CAS  Google Scholar 

  17. Longbo Jiang, Xingzhong Yuan, Guangming Zeng et al (2018) In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl Catal B Environ 227:376–385. https://doi.org/10.1016/j.apcatb.2018.01.042.

  18. Ying Peng Xie, Gang Liu, Lichang Yin et al (2012) Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J Mater Chem 22. https://doi.org/10.1039/c2jm16178h.

  19. Mousa Farhadian, Parvaneh Sangpour, Ghader Hosseinzadeh (2015) Morphology dependent photocatalytic activity of WO3 nanostructures. J Energy Chem 24:171–177. https://doi.org/10.1016/s2095-4956(15)60297-2.

  20. Xiaoqiang An, Jimmy C. Yu, Yu Wang et al (2012) WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J Mater Chem 22. https://doi.org/10.1039/c2jm16709c.

  21. Jinguo Wang, Zimei Chen, Guangjun Zhai et al (2018) Boosting photocatalytic activity of WO3 nanorods with tailored surface oxygen vacancies for selective alcohol oxidations. Appl Surface Sci 462:760–771. https://doi.org/10.1016/j.apsusc.2018.08.181.

  22. Shunyu Yao, Fengyu Qu, Gang Wang et al (2017) Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors. J Alloys Compounds 724:695–702. https://doi.org/10.1016/j.jallcom.2017.07.123.

  23. Bilal Ahmed, Sumeet Kumar, Animesh K. Ojha et al (2017) Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material. Spectrochim Acta A Molecular Biomolecular Spectroscopy 175:250–261. https://doi.org/10.1016/j.saa.2016.11.044.

  24. Ofori FA, Sheikh FA, Appiah-Ntiamoah R et al (2015) A simple method of electrospun tungsten trioxide nanofibers with enhanced visible-light photocatalytic activity. Nano-Micro Lett 7:291–297. https://doi.org/10.1007/s40820-015-0042-8

    Article  CAS  Google Scholar 

  25. Xiongwen Lou, Huachun Zhang (2003) An inorganic route for controlled synthesis of W18O49. Nanorods Inorganic Chem 42:6169–6171. https://doi.org/10.1021/ic034771q.

  26. Su J, Feng X, Sloppy JD et al (2011) Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett 11:203–208. https://doi.org/10.1021/nl1034573.

    Article  CAS  Google Scholar 

  27. Zhao Z-G, Miyauchi M (2008) Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew Chem 120:7059–7163. https://doi.org/10.1002/anie.200802207

    Article  CAS  Google Scholar 

  28. Xiaoqing Gao, Chao Yang, Feng Xiao et al (2012) WO3·0.33H2O nanoplates: hydrothermal synthesis, photocatalytic and gas-sensing properties.Mater Lett 84:151–153. https://doi.org/10.1016/j.matlet.2012.06.078.

  29. Xiaoqing Gao, Xintai Su, Chao Yang et al (2013) Hydrothermal synthesis of WO3 nanoplates as highly sensitive cyclohexene sensor and high-efficiency MB photocatalyst. Sensors Actuators B Chem 181:537–543. https://doi.org/10.1016/j.snb.2013.02.031.

  30. Mohite SV, Ganbavle VV, Rajpure KY (2016) Solar photoelectrocatalytic activities of rhodamine-B using sprayed WO3 photoelectrode. J Alloys Compounds 655:106–113. https://doi.org/10.1016/j.jallcom.2015.09.154.

    Article  CAS  Google Scholar 

  31. Zhang Y-Q, Li X-H, Lü J et al (2014) A ternary TiO2/WO3/graphene nanocomposite adsorbent: facile preparation and efficient removal of Rhodamine B. Int J Minerals Metal Mater 21:813–819. https://doi.org/10.1007/s12613-014-0975-9

    Article  CAS  Google Scholar 

  32. Jian Yi Luo, Zhi Cao, Feng Chen et al. (2013) Strong aggregation adsorption of methylene blue from water using amorphous WO3 nanosheets Applied Surface Science 287: 270–275. https://doi.org/10.1016/j.apsusc.2013.09.139.

  33. Yan Liang, Yong Yang, Chengwu Zou et al (2019) 2D ultra-thin WO3 nanosheets with dominant {002} crystal facets for high-performance xylene sensing and methyl orange photocatalytic degradation. J Alloys Compounds 783: 848–854. https://doi.org/10.1016/j.jallcom.2018.12.384.

  34. Wu J, Qiao P, Li H et al (2019) Surface-oxygen vacancy defect-promoted electron-hole separation of defective tungsten trioxide ultrathin nanosheets and their enhanced solar-driven photocatalytic performance. J Colloid Interface Sci 557:18–27. https://doi.org/10.1016/j.jcis.2019.09.006

    Article  CAS  Google Scholar 

  35. Xiaoguang Wang, Minghui Sun, Muthu Murugananthan et al (2020) Electrochemically self-doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds. Appl Catal B Environ 260. https://doi.org/10.1016/j.apcatb.2019.118205.

  36. Jiaguo Yu, Qi L, Cheng B et al (2008) Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres. J Hazard Mater 160:621–628. https://doi.org/10.1016/j.jhazmat.2008.03.047

    Article  CAS  Google Scholar 

  37. Li Q-H, Wang L-M, Chu D-Q et al (2014) Cylindrical stacks and flower-like tungsten oxide microstructures: controllable synthesis and photocatalytic properties. Ceram Int 40:4969–4973. https://doi.org/10.1016/j.ceramint.2013.09.115

    Article  CAS  Google Scholar 

  38. Dandan Xu, Tengfei Jiang, Dejun Wang et al (2014) pH-Dependent assembly of Tungsten oxide three-dimensional architectures and their application in photocatalysis. ACS Appl Mater Interfaces 6:9321–7. https://doi.org/10.1021/am501651m.

  39. Zhenfeng Wang, Deqing Chu, Limin Wang et al (2017) EDTA-assisted synthesis of camellia-like WO3 ·0.33H2O architectures with enhanced visible-light-driven photocatalytic activity. Catalysis Commun 88:1–4. https://doi.org/10.1016/j.catcom.2016.09.021.

  40. Haitao Wang, Huifang Yang, Deqing Chu et al (2017) Synthesis of 3D hierarchical WO3·0.33H2O microsphere architectures with enhanced visible-light-driven photocatalytic activity. Mater Lett 193:5–8. https://doi.org/10.1016/j.matlet.2017.01.048.

  41. Liang Zhang, Xincun Tang, Zhouguang Lu et al (2011) Facile synthesis and photocatalytic activity of hierarchical WO3 core–shell microspheres. Appl Surface Sci 258:1719–1724. https://doi.org/10.1016/j.apsusc.2011.10.022.

  42. Shunyu Yao, Xu Zhang, Fengyu Qu et al (2016) Hierarchical WO3 nanostructures assembled by nanosheets and their applications in wastewater purification. J Alloys ompounds 689:570–574. https://doi.org/10.1016/j.jallcom.2016.08.025.

  43. Chen Di, Ye J (2008) Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv Func Mater 18:1922–1928. https://doi.org/10.1002/adfm.200701468

    Article  CAS  Google Scholar 

  44. Gang Liu, Jimmy C. Yu, Gao Qing (Max), Lu et al. (2011) Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun 47:6763–6783. https://doi.org/10.1039/c1cc10665a.

  45. Jin Yang, Jiadong Xiao, Hongbin Cao et al (2018) The role of ozone and influence of band structure in WO3 photocatalysis and ozone integrated process for pharmaceutical wastewater treatment. J Hazard Mater 360:481–489. https://doi.org/10.1016/j.jhazmat.2018.08.033.

  46. Siyu Zhang, Hui Li, Zhifeng Yang (2017) Controllable synthesis of WO3 with different crystalline phases and its applications on methylene blue removal from aqueous solution. J Alloys Compounds 722:555–563. https://doi.org/10.1016/j.jallcom.2017.06.095.

  47. Reza Abazari, Ali Reza Mahjoub, Lotf Ali Saghatforoush et al (2014) Characterization and optical properties of spherical WO3 nanoparticles synthesized via the reverse microemulsion process and their photocatalytic behavior. Mater Lett 133:208–211. https://doi.org/10.1016/j.matlet.2014.07.032.

  48. Jianhua Huang, Liang Xiao, Xiaolong Yang (2013) WO3 nanoplates, hierarchical flower-like assemblies and their photocatalytic properties. Mater Res Bull 48:2782–2785. https://doi.org/10.1016/j.materresbull.2013.04.022.

  49. Xiao-Ju Wen, Cheng-Gang Niu, Lei Zhang et al (2018) A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight. Appl Catal B Environ 221:701–714. https://doi.org/10.1016/j.apcatb.2017.09.060.

  50. Weilai Yu, Junxiang Chen, Tongtong Shang et al (2017) Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl Catal B Environ 219:693–704. https://doi.org/10.1016/j.apcatb.2017.08.018.

  51. Deng Y, Feng C, Tangb L et al (2020) Ultrathin low dimensional heterostructure composites with superior photocatalytic activity: Insight into the multichannel charge transfer mechanism. Chem Eng J 393:124718. https://doi.org/10.1016/j.cej.2020.124718

    Article  CAS  Google Scholar 

  52. Liying Huang, Hui Xu, Yeping Li et al (2013) Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans 42:8606–8616. https://doi.org/10.1039/c3dt00115f.

  53. Guochang Chen, Shicong Bian, Cun-Yue Guo et al (2019) Insight into the Z-scheme heterostructure WO3/g-C3N4 for enhanced photocatalytic degradation of methyl orange. Mater Lett 236: 596–599. https://doi.org/10.1016/j.matlet.2018.11.010.

  54. Jikai Yang, Xintong Zhang, Hong Liu et al.(2013) Heterostructured TiO2/WO3 porous microspheres: preparation, characterization and photocatalytic properties. Catal Today 201:195–202. https://doi.org/10.1016/j.cattod.2012.03.008.

  55. Di Liberto G, Tosoni S, Pacchioni G (2019) Theoretical treatment of semiconductor heterojunctions for photocatalysis: the WO3/BiVO4 interface. J Phys Condensed Matter 31:434001. https://doi.org/10.1088/1361-648X/ab2fa4.

  56. Ashok Kumar KV, Chandana L, Ghosal P et al (2018) Simultaneous photocatalytic degradation of p-cresol and Cr (VI) by metal oxides supported reduced graphene oxide. Molecular Catal 451:87–95. https://doi.org/10.1016/j.mcat.2017.11.014.

  57. Jeevitha G, Abhinayaa R, Mangalaraj D et al (2018) Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. J Phys Chem Solids 116:137–147. https://doi.org/10.1016/j.jpcs.2018.01.021.

  58. Tao Jiang, Ling Cheng, Yingchun Han et al (2020) One-pot hydrothermal synthesis of Bi2O3-WO3 p-n heterojunction film for photoelectrocatalytic degradation of norfloxacin. Separation Purification Technol 238:116428. https://doi.org/10.1016/j.seppur.2019.116428.

  59. Minghuan Gao, Lisha You, Linna Guo et al (2019) Fabrication of a novel polyhedron-like WO3/Ag2CO3 p-n junction photocatalyst with highly enhanced photocatalytic activity. J Photochem Photobiol A Chem 374:206–217. https://doi.org/10.1016/j.jphotochem.2019.01.022.

  60. Jin Luo, Xiaosong Zhou, Lin Ma et al (2015) Enhanced visible-light-driven photocatalytic activity of WO3/BiOI heterojunction photocatalysts. J Molecular Catal A Chem 410:168–176. https://doi.org/10.1016/j.molcata.2015.09.019.

  61. Deng Y, Tang L, Feng C et al (2018) Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light. Appl Catal B 238:225–237. https://doi.org/10.1016/j.apcatb.2018.04.075

    Article  CAS  Google Scholar 

  62. Hui Xu, Liang Liu, Xiaojie She et al (2016) WO3 nanorod photocatalysts decorated with few-layer g-C3N4 nanosheets: controllable synthesis and photocatalytic mechanism research. RSC Adv 6:80193–80200. https://doi.org/10.1039/c6ra12861k.

  63. Junwei Fu, Quanlong Xu, Jingxiang Low et al (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B Environ 243:556–565. https://doi.org/10.1016/j.apcatb.2018.11.011.

  64. Tao Pan, Dongdong Chen, Weicheng Xu et al (2020) Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 Step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation. J Hazard Mater 393:122366. https://doi.org/10.1016/j.jhazmat.2020.122366.

  65. Fei He, Aiyun Meng, Bei Cheng et al (2020) Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin J Catal 41:9–20. https://doi.org/10.1016/s1872-2067(19)63382-6.

  66. Pengfei Xia, Shaowen Cao, Bicheng Zhu et al (2020) Designing a 0D/2D S-Scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angewandte Chem Int Edition. https://doi.org/10.1002/anie.201916012.

  67. Jingxiang Low, Jiaguo Yu, Mietek Jaroniec et al (2017) Heterojunction photocatalysts. Adv Mater 29. https://doi.org/10.1002/adma.201601694.

  68. Hao Zhang, Xiaojun Lv, Yueming Li et al (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386. https://doi.org/10.1021/nn901221k.

  69. He Guo, Nan Jiang, Huijuan Wang et al. (2019) Pulsed discharge plasma assisted with graphene-WO3 nanocomposites for synergistic degradation of antibiotic enrofloxacin in water Chemical Engineering Journal 372: 226–240. https://doi.org/10.1016/j.cej.2019.04.119.

  70. Lu Gan, Lijie Xu, Songmin Shang et al (2016) Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism. Ceramics Int 42:15235–15241. https://doi.org/10.1016/j.ceramint.2016.06.160.

  71. Wenyu Zhu, Faqian Sun, Ronn Goei et al (2017) Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Appl Catal B Environ 207:93–102. https://doi.org/10.1016/j.apcatb.2017.02.012.

  72. Jingjing Guo, Yao Li, Shenmin Zhu et al (2012) Synthesis of WO3@Graphene composite for enhanced photocatalytic oxygen evolution from water. RSC Adv 2:1356–1363. https://doi.org/10.1039/c1ra00621e.

  73. Junqi Li, Zhenxing Liu, Zhenfeng Zhu (2015) Enhanced photocatalytic activity in ZnFe2O4–ZnO–Ag3PO4 hollow nanospheres through the cascadal electron transfer with magnetical separation. J Alloys Compounds 636:229–233. https://doi.org/10.1016/j.jallcom.2015.02.176.

  74. Yaocheng Deng, Lin Tang, Guangming Zeng et al (2017) Plasmonic resonance excited dual Z-scheme BiVO4/Ag/Cu2O nanocomposite: synthesis and mechanism for enhanced photocatalytic performance in recalcitrant antibiotic degradation. Environ Sci Nano 4:1494–1511. https://doi.org/10.1039/c7en00237h.

  75. Qian Zhou, Yun Song, Najun Li et al (2020) Direct Dual Z-Scheme Bi2WO6/GQDs/WO3 inverse opals for enhanced photocatalytic activities under visible light. ACS Sustain Chem Eng 8:7921–7927. https://doi.org/10.1021/acssuschemeng.0c01548.

  76. Yee Wen Teh, Yien Wei Goh, Xin Ying Kong et al (2019) Fabrication of Bi2WO6/Cu/WO3 Allsolid‐State Z‐scheme composite photocatalyst to improve CO2 photoreduction under visible light irradiation. ChemCatChem 11: 6431–6438. https://doi.org/10.1002/cctc.201901653.

  77. Jiayi Chen, Xinyan Xiao, Yi Wang et al (2019) Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Appl Surface Sci 467–468:1000–1010. https://doi.org/10.1016/j.apsusc.2018.10.236.

  78. Xingzhong Yuan, Longbo Jiang, Xiaohong Chen et al (2017) Highly efficient visible-light-induced photoactivity of Z-scheme Ag2CO3/Ag/WO3 photocatalysts for organic pollutant degradation. Environ Sci Nano 4:2175–2185. https://doi.org/10.1039/c7en00713b.

  79. Shanshan Ding, Mengshu Han, Yuxuan Dai et al (2019) Synthesis of Ag/AgBr/Bi4O5Br2 plasmonic heterojunction photocatalysts: elevated visible-light photocatalytic performance and Z-scheme. Mech ChemCatChem 11:1–16. https://doi.org/10.1002/cctc.201900529.

  80. Jiabai Cai, Xueqing Wu, Shunxing Li et al (2016) Synthesis of TiO2@WO3/Au nanocomposite hollow spheres with controllable size and high visible-light-driven photocatalytic activity. ACS Sustain Chem Eng 4:1581–1590. https://doi.org/10.1021/acssuschemeng.5b01511.

  81. Jun Zhang, Yun Guo, Yuhan Xiong et al (2017) An environmentally friendly Z-scheme WO3/CDots/CdS heterostructure with remarkable photocatalytic activity and anti-photocorrosion performance. J Catal 356:1–13. https://doi.org/10.1016/j.jcat.2017.09.021.

  82. Fangjun Wu, Xin Li, Wei Liu et al (2017) Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl Surface Sci 405:60–70. https://doi.org/10.1016/j.apsusc.2017.01.285.

  83. Na Lu, Pu Wang, Yan Su et al (2019) Construction of Z-Scheme g-C3N4/RGO/WO3 with in situ photoreduced graphene oxide as electron mediator for efficient photocatalytic degradation of ciprofloxacin .Chemosphere 215: 444–453. https://doi.org/10.1016/j.chemosphere.2018.10.065.

  84. Ahmad Beyhaqi, Qingyi Zeng, Sheng Chang et al (2020) Construction of g-C3N4/WO3/MoS2 ternary nanocomposite with enhanced charge separation and collection for efficient wastewater treatment under visible light. Chemosphere 247:125784. https://doi.org/10.1016/j.chemosphere.2019.125784.

  85. Huali Li, Yajie Chen, Wei Zhou et al (2019) WO3/BiVO4/BiOCl porous nanosheet composites from a biomass template for photocatalytic organic pollutant degradation. J Alloys Compounds 802:76–85. https://doi.org/10.1016/j.jallcom.2019.06.187.

  86. Hyoung-il Kim, Jungwon Kim, Wooyul Kim et al (2011) Enhanced photocatalytic and photoelectrochemical activity in the Ternary Hybrid of CdS/TiO2/WO3 through the Cascadal electron transfer. J Phys Chem C 115:9797–9805. https://doi.org/10.1021/jp1122823.

  87. Narges Omrani, Alireza Nezamzadeh-Ejhieh (2020) A comprehensive study on the enhanced photocatalytic activity of Cu2O/BiVO4/WO3 nanoparticles. J Photochem Photobiol A Chem 389. https://doi.org/10.1016/j.jphotochem.2019.112223.

  88. Zhenfeng Zhu, Ying Yan, Junqi Li (2015) Preparation of flower-like BiOBr–WO3–Bi2WO6 ternary hybrid with enhanced visible-light photocatalytic activity. J Alloys Compounds 651:184–192. https://doi.org/10.1016/j.jallcom.2015.08.137.

  89. Ming Yan, Yilin Wu, Fangfang Zhu et al (2016) The fabrication of a novel Ag3VO4/WO3 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC. Phys Chem Chem Phys 18:3308–3315. https://doi.org/10.1039/c5cp05599g.

  90. Shijie Li, Shiwei Hu, Wei Jiang et al. (2019) In situ construction of WO3 nanoparticles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants. J Colloid Interface Sci 556:335–344. https://doi.org/10.1016/j.jcis.2019.08.077.

  91. Priya A, Prabhakarn Arunachalam, Selvi A et al (2018) Synthesis of BiFeWO6/WO3 nanocomposite and its enhanced photocatalytic activity towards degradation of dye under irradiation of light. Colloids Surfaces A Physicochem Eng Aspects 559:83–91. https://doi.org/10.1016/j.colsurfa.2018.09.031.

  92. Shifu Chen, Yingfei Hu, Sugang Meng et al (2014) Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl Catal B Environ 150–151:564–573. https://doi.org/10.1016/j.apcatb.2013.12.053.

  93. Mahdi Karimi-Nazarabad, Elaheh K. Goharshadi (2017) Highly efficient photocatalytic and photoelectrocatalytic activity of solar light driven WO3/g-C3N4 nanocomposite. Solar Energy Mater Solar Cells 160:484–493. https://doi.org/10.1016/j.solmat.2016.11.005.

  94. Manoj Pudukudy, Shaoyun Shan, Yingju Miao et al (2020) WO3 nanocrystals decorated Ag3PO4 tetrapods as an efficient visible-light responsive Z-scheme photocatalyst for the enhanced degradation of tetracycline in aqueous medium. Colloids Surfaces A Physicochem Eng Aspects 589. https://doi.org/10.1016/j.colsurfa.2020.124457.

  95. Jinsuo Lu, Yujing Wang, Fei Liu et al (2017) Fabrication of a direct Z-scheme type WO3/Ag3PO4 composite photocatalyst with enhanced visible-light photocatalytic performances. Appl Surface Sci 393:180–190. https://doi.org/10.1016/j.apsusc.2016.10.003.

  96. Xingchao Zhang, Ruoyu Zhang, Siying Niu et al (2019) Construction of core-shell structured WO3@SnS2 hetero-junction as a direct Z-scheme photo-catalyst. J Colloid Interface Sci 554:229–238. https://doi.org/10.1016/j.jcis.2019.06.107.

  97. Jichao Zhu, Jie He, Lifang Hu et al (2019) All-solid-state Z-scheme WO3/HTiNbO5-NS heterojunctions with enhanced photocatalytic performance. J Solid State Chem 276:104–113. https://doi.org/10.1016/j.jssc.2019.04.026.

  98. Hanan H. Mohamed (2019) Rationally designed Fe2O3/GO/WO3 Z-Scheme photocatalyst for enhanced solar light photocatalytic water remediation. J Photochem Photobiol A Chem 378:74–84. https://doi.org/10.1016/j.jphotochem.2019.04.023.

  99. Pingfan Xu, Siyi Huang, Minghua Liu et al (2019) Z-Schemed WO3/rGO/SnIn4S8 Sandwich Nanohybrids for Efficient Visible Light Photocatalytic Water Purification Catalysts 9: https://doi.org/10.3390/catal9020187.

  100. Hameed A, Gondal MA, Yamani ZH (2004) Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catalysis Commun 5:715–719. https://doi.org/10.1016/j.catcom.2004.09.002.

  101. Hui Song, Yaguang Li, Zirui Lou et al (2015) Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl Catal Environ 166–167:112–120. https://doi.org/10.1016/j.apcatb.2014.11.020.

  102. Vijay Luxmi, Ashavani Kumar (2019) Enhanced photocatalytic performance of m-WO3 and m-Fe-doped WO3 cuboids synthesized via sol-gel approach using egg albumen as a solvent Materials Science in Semiconductor Processing 104: https://doi.org/10.1016/j.mssp.2019.104690.

  103. Chao Min Teh, Abdul Rahman Mohamed (2011) Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J Alloys Compounds 509:1648–1660. https://doi.org/10.1016/j.jallcom.2010.10.181.

  104. Bilal Tahir M, Sagir M (2019) Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production. Separation Purification Technol 209:94–102. https://doi.org/10.1016/j.seppur.2018.07.029.

  105. Liu H, Peng T, Ke D et al (2007) Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles. Mater Chem Phys 104:377–383. https://doi.org/10.1016/j.matchemphys.2007.03.028

    Article  CAS  Google Scholar 

  106. Xiying Zhu, Pan Zhang, Bin Li et al (2017) Preparation, characterization and photocatalytic properties of La/WO3 composites. J Mater Sci Mater Electron 28:12158–12167. https://doi.org/10.1007/s10854-017-7030-3.

  107. Cong Wang, Lin Cao (2011) Preparation, spectral characteristics and photocatalytic activity of Eu3+-doped WO3 nanoparticles. J Rare Earths 29:727–731. https://doi.org/10.1016/s1002-0721(10)60531-5.

  108. Mohite SV, Ganbavle VV, Rajpure Ky (2017) Photoelectrocatalytic activity of immobilized Yb doped WO3 photocatalyst for degradation of methyl orange dye. J Energy Chem 26:440–447. https://doi.org/10.1016/j.jechem.2017.01.001.

  109. Girish Kumar S, Koteswara Rao KSR (2015) Tungsten-based nanomaterials (WO3 & Bi2WO6): Modifications related to charge carrier transfer mechanisms and photocatalytic applications. Appl Surface Sci 355:939–958. https://doi.org/10.1016/j.apsusc.2015.07.003.

  110. Guodong Chen, Qi Wang, Zhilin Zhao et al (2020) Synthesis and photocatalytic activity study of S-doped WO3 under visible light irradiation. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07827-z.

  111. Yaocheng Deng, Lin Tang, Guangming Zeng et al (2017) Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: Performance and reaction mechanism. Appl Catal B Environ 203:343–354. https://doi.org/10.1016/j.apcatb.2016.10.046.

  112. Fugui Han, Heping Li, Li Fu et al (2016) Synthesis of S-doped WO3 nanowires with enhanced photocatalytic performance towards dye degradation. Chem Phys Lett 651:183–187. https://doi.org/10.1016/j.cplett.2016.03.017.

  113. Yuyang Liu, Ya Li, Wenzhang Li et al (2012) Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light. Appl Surface Sci 258:5038–5045. https://doi.org/10.1016/j.apsusc.2012.01.080.

  114. Keyan Bao, Shaojie Zhang, Ping Ni et al (2020) Convenient fabrication of carbon doped WO3−x ultrathin nanosheets for photocatalytic aerobic oxidation of amines. Catal Today 340:311–317. https://doi.org/10.1016/j.cattod.2018.11.013.

  115. Deng Y, Tang L, Feng C et al (2017) Construction of plasmonic Ag and nitrogen-doped Graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: full-spectrum response ability and mechanism insight. ACS Appl Mater Interfaces 9:42816–42828. https://doi.org/10.1021/acsami.7b14541

    Article  CAS  Google Scholar 

  116. Mohammadi S, Sohrabi M, Golikand AN et al (2016) Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology. J Photochem Photobiol B Biol 61:217–21. https://doi.org/10.1016/j.jphotobiol.2016.05.020.

  117. Xu Ying, Zhou Ying, Nie Guo Zheng et al (2018) Tailoring the photocatalytic activity of WO3 by Nb-F codoping from first-principles calculations. Chin J Phys 56:2285–2290. https://doi.org/10.1016/j.cjph.2018.07.003.

  118. Tijani JO, Ugochukwu O, Fadipe LA et al (2019) Photocatalytic degradation of local dyeing wastewater by iodine-phosphorus co-doped tungsten trioxide nanocomposites under natural sunlight irradiation. J Environ Manage 236:519–533. https://doi.org/10.1016/j.jenvman.2019.02.027

    Article  CAS  Google Scholar 

  119. Gondal MA, Bagabas A, Dastageer A et al (2010) Synthesis, characterization, and antimicrobial application of nano-palladium-doped nano-WO3. J Molecular Catal A Chem 323:78–83. https://doi.org/10.1016/j.molcata.2010.03.019.

  120. Jijin Mai, Yanxiong Fang, Jincheng Liu et al. (2019) Simple synthesis of WO3-Au composite and their improved photothermal synergistic catalytic performance for cyclohexane oxidation Molecular Catalysis 473: https://doi.org/10.1016/j.mcat.2019.04.018.

  121. Jungwon Kim, Chul Wee Lee, Wonyong Choi (2010) Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol 44:6849–6854. https://doi.org/10.1021/es101981r.

  122. Wicaksana Y, Liu S, Scott J et al (2014) Tungsten trioxide as a visible light photocatalyst for volatile organic carbon removal. Molecules 19:17747–17762. https://doi.org/10.3390/molecules191117747

    Article  CAS  Google Scholar 

  123. Mohsen Khajeh Aminian, Jinhua Ye (2011) Morphology influence on photocatalytic activity of tungsten oxide loaded by platinum nanoparticles. J Mater Res 25:141–148. https://doi.org/10.1557/jmr.2010.0021

  124. Qamar M, Yamani ZH, Gondal MA et al (2011) Synthesis and comparative photocatalytic activity of Pt/WO3 and Au/WO3 nanocomposites under sunlight-type excitation. Solid State Sci 13:1748–1754. https://doi.org/10.1016/j.solidstatesciences.2011.07.002.

  125. Wenyu Zhu, Jincheng Liu, Shuyan Yu et al (2016) Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. J Hazard Mater 318:407–416. https://doi.org/10.1016/j.jhazmat.2016.06.066.

  126. Faisal Mehmood, Javed Iqbal, Tariq Jan et al (2017) Structural, photoluminescence, electrical, anti cancer and visible light driven photocatalytic characteristics of Co doped WO3 nanoplates. Vibrational Spectroscopy 93:78–89. https://doi.org/10.1016/j.vibspec.2017.09.005.

  127. Faisal Mehmood, Javed Iqbal, Ismail M et al (2018) Ni doped WO3 nanoplates: an excellent photocatalyst and novel nanomaterial for enhanced anticancer activities. J Alloys Compounds 746:729–738. https://doi.org/10.1016/j.jallcom.2018.01.409.

  128. Dhanalakshmi M, Lakshmi Prabavathi S, Saravanakumar K et al (2020) Iridium nanoparticles anchored WO3 nanocubes as an efficient photocatalyst for removal of refractory contaminants (crystal violet and methylene blue). Chem Phys Lett 745. https://doi.org/10.1016/j.cplett.2020.137285.

  129. Adel A. Ismail, M. Faisal, Adel Al-Haddad (2018) Mesoporous WO3-graphene photocatalyst for photocatalytic degradation of Methylene Blue dye under visible light illumination. J Environ Sci 66:328–337. https://doi.org/10.1016/j.jes.2017.05.001.

Download references

Acknowledgements

The study was financially supported by the National Natural Science Foundation of China (Grant No.51909089), Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ5252), China Postdoctoral Science Foundation (Grant No. 2019M662781), Research Foundation of Education Bureau of Hunan Province, China (Grant No. 20B304), Science Foundation for Young Scholars of Hunan Agricultural University (19QN35), and Hunan Provincial Innovation Foundation for Postgraduate (CX20200663).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaocheng Deng.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, M., Su, L., Deng, Y. et al. Strategies to improve WO3-based photocatalysts for wastewater treatment: a review. J Mater Sci 56, 14416–14447 (2021). https://doi.org/10.1007/s10853-021-06202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06202-8

Navigation