Skip to main content
Log in

Use of Lemon Peel Extract as Antimicrobial Supported on Eco-friendly Polyvinyl Alcohol/Polydimethylsiloxane Sponges

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Prevention of biofilm formation is essential for water treatment and industrial processes. Although there are different agents capable to inhibit bacteria proliferation, the use of natural, and in particular obtained from waste, is highly desirable in the green chemistry paradigm. The objective of this work is to obtain eco-friendly sponges that can be used to prevent biofilm formation by the action of a natural antimicrobial agent. Polyvinylalcohol (PVA) sponges were prepared by freeze-drying using malic and citric acid as green crosslinkers. Aqueous lemon peel extract was used as antimicrobial agent for PVA dissolution. Some sponges were coated with polydimethylsiloxane (PDMS) in order to increase the stability in aqueous media and provide flexibility. Sponges were characterized by ATR-FTIR, TGA, DSC, nitrogen adsorption isotherms and SEM. Water contact angles and swelling degrees of all the prepared sponges were measured. Kinetic release measurements of the yellow pigment, present in the lemon extract, were analyzed under different pH and ionic strength conditions. The obtained sponges were incubated for 24 h at room temperature with Pseudomonas protegens. The surface of the sponges after incubation was characterized by Raman spectroscopy and observed at the microscope to determine the presence of biofilm. UV–Vis spectrophotometry with crystal violet were employed to quantify biofilm formation and optical density at 600 nm was measured in the liquid media to determine the bacterial cell concentration. Sponges show high mechanical and chemical resistance and incorporation of lemon extract prevent biofilm formation as high as 70% with respect to sponges without the extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Zhang W, Jiang H, Rhim J-W et al (2022) Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chem 367:130671. https://doi.org/10.1016/j.foodchem.2021.130671

    Article  CAS  PubMed  Google Scholar 

  2. Kouassi M-C, Grisel M, Gore E (2022) Multifunctional active ingredient-based delivery systems for skincare formulations: a review. Colloids Surf B 217:112676. https://doi.org/10.1016/j.colsurfb.2022.112676

    Article  CAS  Google Scholar 

  3. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461. https://doi.org/10.1046/j.1365-2958.1998.00797.x

    Article  PubMed  Google Scholar 

  4. Ueda A, Saneoka H (2015) Characterization of the ability to form biofilms by plant-associated Pseudomonas species. Curr Microbiol 70:506–513. https://doi.org/10.1007/s00284-014-0749-7

    Article  CAS  PubMed  Google Scholar 

  5. Wang P, Zhao J, Ruan Y et al (2022) Degradation of polypropylene by the Pseudomonas aeruginosa strains LICME WZH-4 and WGH-6. J Polym Environ 30:3949–3958. https://doi.org/10.1007/s10924-022-02480-8

    Article  CAS  Google Scholar 

  6. Wilkes RA, Aristilde L (2017) Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. J Appl Microbiol 123:582–593. https://doi.org/10.1111/jam.13472

    Article  CAS  PubMed  Google Scholar 

  7. Nadeau LJ, Barlow DE, Hung C-S et al (2021) Colonization and degradation of polyurethane coatings by Pseudomonas protegens biofilms is promoted by PueA and PueB hydrolases. Int Biodeterior Biodegradation 156:105121. https://doi.org/10.1016/j.ibiod.2020.105121

    Article  CAS  Google Scholar 

  8. Hung C-S, Zingarelli S, Nadeau LJ et al (2016) Carbon catabolite repression and impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Appl Environ Microbiol 82:6080–6090. https://doi.org/10.1128/AEM.01448-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang J, Guo R, Zhang X, Zhao X (2022) Effect of Pseudomonas aeruginosa on corrosion of X65 pipeline steel. Heliyon 8:e12588. https://doi.org/10.1016/j.heliyon.2022.e12588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Microbiologically influenced corrosion behavior of carbon steel in the presence of marine bacteria Pseudomonas sp. and Vibrio sp. | ACS Omega. https://doi.org/10.1021/acsomega.0c05402. Accessed 29 Aug 2023

  11. Ogazi AC, Osifo PO (2023) Inhibition of coliforms and Escherichia coli bacterial strains in water by 3D printed CS/GO/AgNP filtration membranes. J Polym Environ. https://doi.org/10.1007/s10924-023-02889-9

    Article  Google Scholar 

  12. Kanth S, Puttaiahgowda YM, Varadavenkatesan T, Pandey S (2022) One-pot synthesis of polyvinyl alcohol-piperazine cross-linked polymer for antibacterial applications. J Polym Environ 30:4749–4762. https://doi.org/10.1007/s10924-022-02553-8

    Article  CAS  Google Scholar 

  13. Boonyod S, Pivsa-Art W, Nanthananon P et al (2023) Antibacterial property and biodegradation of PLA/PBS nonwoven fabric coated with mangosteen pericarp extract. J Polym Environ 31:3070–3080. https://doi.org/10.1007/s10924-023-02804-2

    Article  CAS  Google Scholar 

  14. Jelley RE, Lee AJ, Zujovic Z et al (2022) First use of grape waste-derived building blocks to yield antimicrobial materials. Food Chem 370:131025. https://doi.org/10.1016/j.foodchem.2021.131025

    Article  CAS  PubMed  Google Scholar 

  15. Abdel-Naeem HHS, Elshebrawy HA, Imre K et al (2022) Antioxidant and antibacterial effect of fruit peel powders in chicken patties. Foods 11:301. https://doi.org/10.3390/foods11030301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Henderson AH, Fachrial E, Lister INE (2018) Antimicrobial activity of lemon (Citrus limon) peel extract against Escherichia coli. Am Acad Sci Res J Eng Technol Sci 39:268–273

    Google Scholar 

  17. Ahlawat W, Dilbaghi N, Kumar R et al (2023) Adsorption of harmful dyes and antimicrobial studies utilizing recyclable ZnO, its composites with conventionally used activated carbon, and waste orange peel as a greener approach. J Environ Chem Eng 11:110268. https://doi.org/10.1016/j.jece.2023.110268

    Article  CAS  Google Scholar 

  18. Sazali NS, Pauzi FNM, Al-Dhalli S, Ng CH (2022) Photoprotective and antioxidant effects of Citrus limon and Citrus sinensis peels: comparative investigation of the efficiency of five extraction solvents. Med Plants 14:284–292. https://doi.org/10.5958/0975-6892.2022.00033.8

    Article  Google Scholar 

  19. Shuaib MJ, Shailabi TI, Borwis EO, Muhammed AS (2021) Antimicrobial activity evaluation of citrus lemon against Streptococcus pyogenes and Escherichia coli. IOSR J Pharm 11(12):11–16

  20. Rivera-Hernández G, Antunes-Ricardo M, Martínez-Morales P, Sánchez ML (2021) Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm 600:120478. https://doi.org/10.1016/j.ijpharm.2021.120478

    Article  CAS  PubMed  Google Scholar 

  21. Nooeaid P, Chuysinuan P, Pitakdantham W et al (2021) Eco-friendly polyvinyl alcohol/polylactic acid core/shell structured fibers as controlled-release fertilizers for sustainable agriculture. J Polym Environ 29:552–564. https://doi.org/10.1007/s10924-020-01902-9

    Article  CAS  Google Scholar 

  22. Amalraj A, Haponiuk JT, Thomas S, Gopi S (2020) Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int J Biol Macromol 151:366–375. https://doi.org/10.1016/j.ijbiomac.2020.02.176

    Article  CAS  PubMed  Google Scholar 

  23. Nisola GM, Limjuco LA, Vivas EL et al (2015) Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation. Chem Eng J 280:536–548. https://doi.org/10.1016/j.cej.2015.05.107

    Article  CAS  Google Scholar 

  24. Gautam L, Warkar SG, Ahmad SI et al (2022) A review on carboxylic acid cross-linked polyvinyl alcohol: properties and applications. Polym Eng Sci 62:225–246. https://doi.org/10.1002/pen.25849

    Article  CAS  Google Scholar 

  25. Bi S, Xu K, Shao G et al (2023) Mechanically robust antifouling coating with dual-functional antifouling strategy by infiltrating PDMS into plasma-sprayed porous Al2O3-Cu coating. J Mater Sci Technol 159:125–137. https://doi.org/10.1016/j.jmst.2023.02.034

    Article  Google Scholar 

  26. Zhang L, Zhang Y, Chen P et al (2019) Paraffin oil based soft-template approach to fabricate reusable porous PDMS sponge for effective oil/water separation. Langmuir 35:11123–11131. https://doi.org/10.1021/acs.langmuir.9b01861

    Article  CAS  PubMed  Google Scholar 

  27. Filloux A, Ramos J-L (2014) pseudomonas methods and protocols. Springer, New York

    Book  Google Scholar 

  28. Rudra R, Kumar V, Paban Kundu P (2015) Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Adv 5:83436–83447. https://doi.org/10.1039/C5RA16068E

    Article  CAS  Google Scholar 

  29. Wang Y, Hsieh Y-L (2010) Crosslinking of polyvinyl alcohol (PVA) fibrous membranes with glutaraldehyde and PEG diacylchloride. J Appl Polym Sci 116:3249–3255. https://doi.org/10.1002/app.31750

    Article  CAS  Google Scholar 

  30. Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2:179–188. https://doi.org/10.1007/s13204-012-0080-1

    Article  CAS  Google Scholar 

  31. Farid E, Kamoun EA, Taha TH et al (2022) PVA/CMC/attapulgite clay composite hydrogel membranes for biomedical applications: factors affecting hydrogel membranes crosslinking and bio-evaluation tests. J Polym Environ 30:4675–4689. https://doi.org/10.1007/s10924-022-02538-7

    Article  CAS  Google Scholar 

  32. Suhail M, Shih C-M, Liu J-Y et al (2022) Synthesis of glutamic acid/polyvinyl alcohol based hydrogels for controlled drug release: in-vitro characterization and in-vivo evaluation. J Drug Deliv Sci Technol 75:103715. https://doi.org/10.1016/j.jddst.2022.103715

    Article  CAS  Google Scholar 

  33. Hossen MR, Talbot MW, Kennard R et al (2020) A comparative study of methods for porosity determination of cellulose based porous materials. Cellulose 27:6849–6860. https://doi.org/10.1007/s10570-020-03257-9

    Article  CAS  Google Scholar 

  34. Naderi M (2015) Chapter fourteen—surface area: Brunauer–Emmett–Teller (BET). In: Tarleton S (ed) Progress in filtration and separation. Academic Press, Oxford, pp 585–608

    Chapter  Google Scholar 

  35. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548. https://doi.org/10.1016/j.msec.2007.10.088

    Article  CAS  Google Scholar 

  36. Kačuráková M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydr Res 337:1145–1153. https://doi.org/10.1016/S0008-6215(02)00102-7

    Article  PubMed  Google Scholar 

  37. Chin K-M, Sam ST, Ong HL et al (2022) Bioinspired crosslinked nanocomposites of polyvinyl alcohol-reinforced cellulose nanocrystals extracted from rice straw with ethanedioic acid. J Nanomater 2022:3225211. https://doi.org/10.1155/2022/3225211

    Article  CAS  Google Scholar 

  38. Zhao H, Li X, Zhang L et al (2021) Preparation and bacteriostatic research of porous polyvinyl alcohol/biochar/nanosilver polymer gel for drinking water treatment. Sci Rep 11:12205. https://doi.org/10.1038/s41598-021-91833-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu H, Xu X, Chen X et al (2007) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103:125–133. https://doi.org/10.1002/app.24835

    Article  CAS  Google Scholar 

  40. Zulkifli FH, Hussain FSJ, Harun WSW, Yusoff MM (2019) Highly porous of hydroxyethyl cellulose biocomposite scaffolds for tissue engineering. Int J Biol Macromol 122:562–571. https://doi.org/10.1016/j.ijbiomac.2018.10.156

    Article  CAS  PubMed  Google Scholar 

  41. Park J-S, Park J-W, Ruckenstein E (2001) On the viscoelastic properties of poly(vinyl alcohol) and chemically crosslinked poly(vinyl alcohol). J Appl Polym Sci 82:1816–1823. https://doi.org/10.1002/app.2023

    Article  CAS  Google Scholar 

  42. Liu Y, Geever LM, Kennedy JE et al (2010) Thermal behavior and mechanical properties of physically crosslinked PVA/gelatin hydrogels. J Mech Behav Biomed Mater 3:203–209. https://doi.org/10.1016/j.jmbbm.2009.07.001

    Article  PubMed  Google Scholar 

  43. Ghanem N, Mihoubi D, Kechaou N, Mihoubi NB (2012) Microwave dehydration of three citrus peel cultivars: effect on water and oil retention capacities, color, shrinkage and total phenols content. Ind Crops Prod 40:167–177. https://doi.org/10.1016/j.indcrop.2012.03.009

    Article  CAS  Google Scholar 

  44. Peppas NA, Sahlin JJ (1989) A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm 57:169–172. https://doi.org/10.1016/0378-5173(89)90306-2

    Article  CAS  Google Scholar 

  45. Rezaei A, Nasirpour A, Tavanai H, Fathi M (2016) A study on the release kinetics and mechanisms of vanillin incorporated in almond gum/polyvinyl alcohol composite nanofibers in different aqueous food simulants and simulated saliva. Flavour Fragr J 31:442–447. https://doi.org/10.1002/ffj.3335

    Article  CAS  Google Scholar 

  46. Bhagya Raj GVS, Dash KK (2022) Microencapsulation of betacyanin from dragon fruit peel by complex coacervation: physicochemical characteristics, thermal stability, and release profile of microcapsules. Food Biosci 49:101882. https://doi.org/10.1016/j.fbio.2022.101882

    Article  CAS  Google Scholar 

  47. Alehosseini A, Gómez-Mascaraque LG, Ghorani B, López-Rubio A (2019) Stabilization of a saffron extract through its encapsulation within electrospun/electrosprayed zein structures. LWT 113:108280. https://doi.org/10.1016/j.lwt.2019.108280

    Article  CAS  Google Scholar 

  48. Sabzi M, Afshari MJ, Babaahmadi M, Shafagh N (2020) pH-dependent swelling and antibiotic release from citric acid crosslinked poly(vinyl alcohol) (PVA)/nano silver hydrogels. Colloids Surf B 188:110757. https://doi.org/10.1016/j.colsurfb.2019.110757

    Article  CAS  Google Scholar 

  49. Li N-N, Fu C-P, Zhang L-M (2014) Using casein and oxidized hyaluronic acid to form biocompatible composite hydrogels for controlled drug release. Mater Sci Eng C 36:287–293. https://doi.org/10.1016/j.msec.2013.12.025

    Article  CAS  Google Scholar 

  50. Cruz-Félix AS, Santiago-Alvarado A, Márquez-García J, González-García J (2019) PDMS samples characterization with variations of synthesis parameters for tunable optics applications. Heliyon 5:e03064. https://doi.org/10.1016/j.heliyon.2019.e03064

    Article  PubMed  PubMed Central  Google Scholar 

  51. Beal J, Farny NG, Haddock-Angelli T et al (2020) Robust estimation of bacterial cell count from optical density. Commun Biol 3:1–29. https://doi.org/10.1038/s42003-020-01127-5

    Article  CAS  Google Scholar 

  52. Evaluation of antimicrobial activity of Algerian lemon (Citrus limon L.) peels and seeds extracts | Abstract. https://www.derpharmachemica.com/abstract/evaluation-of-antimicrobial-activity-of-algerian-lemoncitrus-limonl-peels-and-seeds-extracts-10642.html. Accessed 4 Sept 2023

  53. Caputo L, Quintieri L, Cavalluzzi MM et al (2018) Antimicrobial and antibiofilm activities of citrus water-extracts obtained by microwave-assisted and conventional methods. Biomedicines 6:70. https://doi.org/10.3390/biomedicines6020070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vikram A, Jayaprakasha GK, Jesudhasan PR et al (2010) Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 109:515–527. https://doi.org/10.1111/j.1365-2672.2010.04677.x

    Article  CAS  PubMed  Google Scholar 

  55. Kim H-S, Ham S-Y, Ryoo H-S et al (2023) Inhibiting bacterial biofilm formation by stimulating c-di-GMP regulation using citrus peel extract from Jeju Island. Sci Total Environ 872:162180. https://doi.org/10.1016/j.scitotenv.2023.162180

    Article  CAS  PubMed  Google Scholar 

  56. Sadeva IGKA, Wulandari PA, Prasetyo AV et al (2022) Analysis of antiquorum-sensing and antibiofilm activity by pomelo peel extract (Citrus maxima) on multidrug-resistance Pseudomonas aeruginosa. Biomedicine (Taipei) 12:20–33. https://doi.org/10.37796/2211-8039.1364

    Article  PubMed  Google Scholar 

  57. Li Y, Wang G, Guo Z et al (2020) Preparation of microcapsules coating and the study of their bionic anti-fouling performance. Materials 13:1669. https://doi.org/10.3390/ma13071669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alamri AH (2020) Localized corrosion and mitigation approach of steel materials used in oil and gas pipelines—an overview. Eng Fail Anal 116:104735. https://doi.org/10.1016/j.engfailanal.2020.104735

    Article  CAS  Google Scholar 

  59. Idais RH, Abuhabib AA, Hamzah S (2022) Recent advances in measuring and controlling biofouling of seawater reverse osmosis SWRO: a review. In: Osmotically driven membrane processes. https://doi.org/10.5772/intechopen.95782

  60. Bogler A, Bar-Zeev E (2018) Membrane distillation biofouling: impact of feedwater temperature on biofilm characteristics and membrane performance. Environ Sci Technol 52:10019–10029. https://doi.org/10.1021/acs.est.8b02744

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Daniel H. Murgida for providing his time and knowledge of the Raman measurements. This work was financially supported by University of Buenos Aires (UBACyT project 20020150100079B), Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, (PIP 2021–2023, code 11220200100993CO) and the Ministry of Science and Technology of Argentina (MINCYT, PICT-2020-SERIEA-00710).

Funding

This work was financially supported by National Scientific and Technical Research Council, Argentina, PIP 2021–2023, code 11220200100993CO, Ministerio de Ciencia, Tecnología e Innovación, PICT-2020-SERIEA-00710, University of Buenos Aires, UBACyT project 20020150100079B.

Author information

Authors and Affiliations

Authors

Contributions

MLGF: Data Curation, Investigation, Visualization. IKL: Methodology, Investigation, Validation, Visualization, Writing-original draft, Writing-review & editing. DS: Data Curation, Investigation, Visualization, RMN: Funding acquisition, Resources, Writing-original draft, Writing-review & editing. LMSM: Data Curation, Investigation, Formal analysis, Visualization, Methodology, Writing-original draft, Writing-review & editing, Supervision, Project administration.

Corresponding author

Correspondence to Leila M. Saleh Medina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11703 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Fernández, M.L., Levy, I.K., Salustro, D. et al. Use of Lemon Peel Extract as Antimicrobial Supported on Eco-friendly Polyvinyl Alcohol/Polydimethylsiloxane Sponges. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03148-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03148-7

Keywords

Navigation