Skip to main content

Advertisement

Log in

Eco-Friendly Polyvinyl Alcohol/Polylactic Acid Core/Shell Structured Fibers as Controlled-Release Fertilizers for Sustainable Agriculture

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Using controlled-release fertilizers (CRFs) is one of the sustainable strategies that improve the effectiveness of fertilizers in agricultural production. In the present study, CRFs were developed by encapsulating nitrogen–phosphorus–potassium (NPK) nutrients with core/shell fibers. The NPK-loaded core/shell fibers were fabricated using co-axial electrospinning based on biodegradable and biocompatible hydrophilic and hydrophobic polymers, including polyvinyl alcohol (PVA) as the core phase and polylactic acid (PLA) as the shell phase. The influences of core/shell structures and polymers used on the physical properties, release profile, degradation behavior, and function of the fertilizer in the field were investigated. Results showed that the PVA/PLA core/shell fibers with diameters in micro-sizes provided higher encapsulation efficiency compared with the PVA monolithic fibers. The core/shell fibers enhanced the stability and release characteristics of the plant nutrients in a controlled manner. Plant growth assessment undertaken with green cos lettuce and red cos lettuce showed that the tested fertilizers were not toxic to the plants. Only one application at the beginning of planting showed simulating effect on vegetative growth parameter and effectively promoted good quality of plant growth. As the results, the NPK-loaded PVA (core)/PLA (shell) fibers could act as CRFs with showing controlled release of fertilizers which are suitable for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu J, Yang Y, Gao B et al (2018) Bio-based elastic polyurethane for controlled-release urea fertilizer: fabrication, properties, swelling and nitrogen release characteristics. J Clean Prod 209:528–537. https://doi.org/10.1016/j.jclepro.2018.10.263

    Article  CAS  Google Scholar 

  2. Shukla P, Chaurasia P, Younis K et al (2019) Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnol Environ Eng 4:1–15. https://doi.org/10.1007/s41204-019-0058-2

    Article  Google Scholar 

  3. Chen S, Yang M, Ba C et al (2018) Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Sci Total Environ 615:431–437. https://doi.org/10.1016/j.scitotenv.2017.09.209

    Article  CAS  PubMed  Google Scholar 

  4. Poddar K, Vijayan J, Ray S, Adak T (2017) Nanotechnology for sustainable agriculture. in: biotechnology for sustainable agriculture: emerging approaches and strategies. Elsevier Inc., pp 281–303

  5. Rychter P, Kot M, Bajer K et al (2006) Utilization of starch films plasticized with urea as fertilizer for improvement of plant growth. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2015.10.051

    Article  Google Scholar 

  6. Yang YY, Liu ZP, Yu DG et al (2018) Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites. Int J Nanomed 13:2395–2404. https://doi.org/10.2147/IJN.S154849

    Article  CAS  Google Scholar 

  7. Xiao Y, Peng F, Zhang Y et al (2019) Effect of bag-controlled release fertilizer on nitrogen loss, greenhouse gas emissions, and nitrogen applied amount in peach production. J Clean Prod 234:258–274. https://doi.org/10.1016/j.jclepro.2019.06.219

    Article  CAS  Google Scholar 

  8. Li X, Li Q, Xu X et al (2016) Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. J Taiwan Inst Chem Eng 60:564–572. https://doi.org/10.1016/j.jtice.2015.10.027

    Article  CAS  Google Scholar 

  9. Xiao X, Yu L, Xie F et al (2017) One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chem Eng J 309:607–616. https://doi.org/10.1016/j.cej.2016.10.101

    Article  CAS  Google Scholar 

  10. Uzoh CF, Onukwuli OD, Ozofor IH, Odera RS (2019) Encapsulation of urea with alkyd resin-starch membranes for controlled N2 release: synthesis, characterization, morphology and optimum N2 release. Process Saf Environ Prot 121:133–142. https://doi.org/10.1016/j.psep.2018.10.015

    Article  CAS  Google Scholar 

  11. Li X, Yan Z, Khalid M et al (2019) Controlled-release compound fertilizers improve the growth and flowering of potted Freesia hybrida. Biocatal Agric Biotechnol 17:480–485. https://doi.org/10.1016/j.bcab.2019.01.004

    Article  Google Scholar 

  12. Olad A, Zebhi H, Salari D et al (2018) Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Mater Sci Eng C 90:333–340. https://doi.org/10.1016/j.msec.2018.04.083

    Article  CAS  Google Scholar 

  13. França D, Medina ÂF, Messa LL et al (2018) Chitosan spray-dried microcapsule and microsphere as fertilizer host for swellable—controlled release materials. Carbohydr Polym 196:47–55. https://doi.org/10.1016/j.carbpol.2018.05.014

    Article  CAS  PubMed  Google Scholar 

  14. Yang X, Geng J, Li C et al (2016) Cumulative release characteristics of controlled-release nitrogen and potassium fertilizers and their effects on soil fertility, and cotton growth. Sci Rep. https://doi.org/10.1038/srep39030

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liang D, Du C, Ma F et al (2019) Interaction between polyacrylate coatings used in controlled-release fertilizers and soils in wheat-rice rotation fields. Agric Ecosyst Environ 286:106650. https://doi.org/10.1016/j.agee.2019.106650

    Article  CAS  Google Scholar 

  16. Li Z, Liu Z, Zhang M et al (2020) Long-term effects of controlled-release potassium chloride on soil available potassium, nutrient absorption and yield of maize plants. Soil Tillage Res. https://doi.org/10.1016/j.still.2019.104438

    Article  Google Scholar 

  17. Qiao D, Liu H, Yu L et al (2016) Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr Polym 147:146–154. https://doi.org/10.1016/j.carbpol.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  18. Yang X, Jiang R, Lin Y et al (2018) Nitrogen release characteristics of polyethylene-coated controlled-release fertilizers and their dependence on membrane pore structure. Particuology 36:158–164. https://doi.org/10.1016/j.partic.2017.05.002

    Article  CAS  Google Scholar 

  19. Bortoletto-Santos R, Guimarães GGF, Roncato Junior V et al (2020) Biodegradable oil-based polymeric coatings on urea fertilizer: N release kinetic transformations of urea in soil. Sci Agric 77:1–9. https://doi.org/10.1590/1678-992x-2018-0033

    Article  CAS  Google Scholar 

  20. Qi H, Ma R, Shi C et al (2019) Novel low-cost carboxymethyl cellulose microspheres with excellent fertilizer absorbency and release behavior for saline-alkali soil. Int J Biol Macromol 131:412–419. https://doi.org/10.1016/j.ijbiomac.2019.03.047

    Article  CAS  PubMed  Google Scholar 

  21. Qi H, Ma R, Shi C et al (2019) Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules. J Control Release 63:163–172. https://doi.org/10.1016/j.biortech.2007.03.029

    Article  CAS  Google Scholar 

  22. An D, Liu B, Yang L et al (2017) Fabrication of graphene oxide/polymer latex composite film coated on KNO3fertilizer to extend its release duration. Chem Eng J 311:318–325. https://doi.org/10.1016/j.cej.2016.11.109

    Article  CAS  Google Scholar 

  23. Krishnamoorthy V, Rajiv S (2018) Tailoring electrospun polymer blend carriers for nutrient delivery in seed coating for sustainable agriculture. J Clean Prod 177:69–78. https://doi.org/10.1016/j.jclepro.2017.12.141

    Article  CAS  Google Scholar 

  24. Hendrawan Khoerunnisa F, Sonjaya Y, Chotimah N (2016) Physical and chemical characteristics of alginate-poly (vinyl alcohol) based controlled release hydrogel. J Environ Chem Eng 4:4863–4869. https://doi.org/10.1016/j.jece.2016.03.043

    Article  CAS  Google Scholar 

  25. Kumar R, Ashfaq M, Verma N (2018) Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. J Mater Sci 53:7150–7164. https://doi.org/10.1007/s10853-018-2107-9

    Article  CAS  Google Scholar 

  26. Dos Santos BR, Bacalhau FB, Pereira TDS et al (2015) Chitosan-montmorillonite microspheres: a sustainable fertilizer delivery system. Carbohydr Polym 127:340–346. https://doi.org/10.1016/j.carbpol.2015.03.064

    Article  CAS  Google Scholar 

  27. Rop K, Karuku GN, Mbui D et al (2018) Formulation of slow release NPK fertilizer (cellulose-graft-poly(acrylamide)/nano-hydroxyapatite/soluble fertilizer) composite and evaluating its N mineralization potential. Ann Agric Sci 63:1–10. https://doi.org/10.1016/j.aoas.2018.11.001

    Article  Google Scholar 

  28. Yin L, Yang S, He M et al (2017) Physicochemical and biological characteristics of BMP-2/IGF-1-loaded three-dimensional coaxial electrospun fibrous membranes for bone defect repair. J Mater Sci Mater Med. https://doi.org/10.1007/s10856-017-5898-3

    Article  PubMed  Google Scholar 

  29. Ojah N, Saikia D, Gogoi D et al (2019) Surface modification of core-shell silk/PVA nanofibers by oxygen dielectric barrier discharge plasma: Studies of physico-chemical properties and drug release behavior. Appl Surf Sci 475:219–229. https://doi.org/10.1016/j.apsusc.2018.12.270

    Article  CAS  Google Scholar 

  30. Ji X, Wang W, Li W et al (2019) pH-responsible self-healing performance of coating with dual-action core-shell electrospun fibers. J Taiwan Inst Chem Eng 104:227–239. https://doi.org/10.1016/j.jtice.2019.06.022

    Article  CAS  Google Scholar 

  31. Sengor M, Ozgun A, Gunduz O, Altintas S (2020) Aqueous electrospun core/shell nanofibers of PVA/microbial transglutaminase cross-linked gelatin composite scaffolds. Mater Lett 263:127233. https://doi.org/10.1016/j.matlet.2019.127233

    Article  CAS  Google Scholar 

  32. Yan E, Jiang J, Yang X et al (2020) pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Deliv Sci Technol 55:101455. https://doi.org/10.1016/j.jddst.2019.101455

    Article  CAS  Google Scholar 

  33. Chuysinuan P, Pengsuk C, Lirdprapamongkol K et al (2019) Enhanced structural stability and controlled drug release of hydrophilic antibiotic-loaded alginate/soy protein isolate core-sheath fibers for tissue engineering applications. Fibers Polym 20:1–10. https://doi.org/10.1007/s12221-019-8753-y

    Article  CAS  Google Scholar 

  34. Abrams D, Metcalf D, Hojjatie M (2014) Determination of Kjeldahl nitrogen in fertilizers by AOAC official methodSM 978.02: effect of copper sulfate as a catalyst. J AOAC Int 97:764–767. https://doi.org/10.5740/jaoacint.13-299

    Article  CAS  PubMed  Google Scholar 

  35. OECD/OCDE 208 (2006) Guidelines for the testing of chemicals terrestrial plant test: seedling emergence and seedling growth test. Paris Organ Econ Coop Dev. https://doi.org/10.1787/9789264242340-en

    Article  Google Scholar 

  36. Saquing CD, Tang C, Monian B et al (2013) Alginate-polyethylene oxide blend nanofibers and the role of the carrier polymer in electrospinning. Ind Eng Chem Res 52:8692–8704. https://doi.org/10.1021/ie302385b

    Article  CAS  Google Scholar 

  37. Stone SA, Gosavi P, Athauda TJ, Ozer RR (2013) In situ citric acid crosslinking of alginate/polyvinyl alcohol electrospun nanofibers. Mater Lett 112:32–35. https://doi.org/10.1016/j.matlet.2013.08.100

    Article  CAS  Google Scholar 

  38. Perez JJ, Francois NJ (2016) Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydr Polym 148:134–142. https://doi.org/10.1016/j.carbpol.2016.04.054

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen TTT, Ghosh C, Hwang SG et al (2012) Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm 439:296–306. https://doi.org/10.1016/j.ijpharm.2012.09.019

    Article  CAS  PubMed  Google Scholar 

  40. Sperling LE, Reis KP, Pranke P, Wendorff JH (2016) Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery. Drug Discov Today 21:1243–1256. https://doi.org/10.1016/j.drudis.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  41. Gonçalves RP, da Silva FFF, Picciani PHS et al (2015) Morphology and thermal properties of core-shell PVA/PLA ultrafine fibers produced by coaxial electrospinning. Mater Sci Appl 06:189–199. https://doi.org/10.4236/msa.2015.62022

    Article  CAS  Google Scholar 

  42. Yang C, Wu X, Zhao Y et al (2011) Nanofibrous scaffold prepared by electrospinning of poly ( vinyl alcohol)/gelatin aqueous solutions. Appl Polym Sci. https://doi.org/10.1002/app.33934

    Article  Google Scholar 

  43. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548. https://doi.org/10.1016/j.msec.2007.10.088

    Article  CAS  Google Scholar 

  44. Maleki M, Amani-Tehran M, Latifi M, Mathur S (2014) Drug release profile in core-shell nanofibrous structures: a study on peppas equation and artificial neural network modeling. Comput Methods Programs Biomed 113:92–100. https://doi.org/10.1016/j.cmpb.2013.09.003

    Article  PubMed  Google Scholar 

  45. Naik SK, Barman D, Rampal Medhi RP (2013) Evaluation of electrical conductivity of the fertiliser solution on growth and flowering of a cymbidium hybrid. South African J Plant Soil 30:33–39. https://doi.org/10.1080/02571862.2013.771753

    Article  Google Scholar 

  46. Ye HM, Li HF, Wang CS et al (2020) Degradable polyester/urea inclusion complex applied as a facile and environment-friendly strategy for slow-release fertilizer: performance and mechanism. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122704

    Article  PubMed  PubMed Central  Google Scholar 

  47. Calabria L, Vieceli N, Bianchi O et al (2012) Soy protein isolate/poly(lactic acid) injection-molded biodegradable blends for slow release of fertilizers. Ind Crops Prod 36:41–46. https://doi.org/10.1016/j.indcrop.2011.08.003

    Article  CAS  Google Scholar 

  48. González ME, Cea M, Medina J et al (2015) Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci Total Environ 505:446–453. https://doi.org/10.1016/j.scitotenv.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Jia C, Zhang X et al (2018) Synthesis and performance of bio-based epoxy coated urea as controlled release fertilizer. Prog Org Coatings 119:50–56. https://doi.org/10.1016/j.porgcoat.2018.02.013

    Article  CAS  Google Scholar 

  50. Lu H, Tian H, Zhang M et al (2020) Water Polishing improved controlled-release characteristics and fertilizer efficiency of castor oil-based polyurethane coated diammonium phosphate. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-62611-w

    Article  CAS  Google Scholar 

  51. Ibrahim KA, Naz MY, Shukrullah S et al (2020) Nitrogen pollution impact and remediation through low cost starch based biodegradable polymers. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-62793-3

    Article  CAS  Google Scholar 

  52. Giroto AS, Guimarães GGF, Foschini M, Ribeiro C (2017) Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Sci Rep. https://doi.org/10.1038/srep46032

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rashidzadeh A, Olad A (2014) Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr Polym 114:269–278. https://doi.org/10.1016/j.carbpol.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  54. Kampeerapappun P, Phanomkate N (2013) Slow release fertilizer from core-shell electrospun fibers. Chiang Mai J Sci 40:775–782

    CAS  Google Scholar 

  55. Trenkel ME (1997) Controlled-release and stabilized fertilizers in agriculture. The international fertilizer industry association

  56. Jain SK (2007) Controlled release fertilizers: trends and technologies. Polish J Chem Technol 9:81–84. https://doi.org/10.2478/v10026-007-0096-6

    Article  Google Scholar 

  57. Shaviv A (2000) Advances in controlled release of fertilizers. Adv Agron 71:1–49. https://doi.org/10.1016/S0065-2113(01)71011-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge Biodiversity-Based Economy Development Office (BEDO), Bangkok, Thailand, for financial support (Grant Number 62/2559) under bioplastics scheme. The authors would like to thank Ms. Ratchada Wongkanya, Department of Materials Science, Faculty of Science, Kasetsart University, for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patcharakamon Nooeaid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nooeaid, P., Chuysinuan, P., Pitakdantham, W. et al. Eco-Friendly Polyvinyl Alcohol/Polylactic Acid Core/Shell Structured Fibers as Controlled-Release Fertilizers for Sustainable Agriculture. J Polym Environ 29, 552–564 (2021). https://doi.org/10.1007/s10924-020-01902-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01902-9

Keywords

Navigation