Skip to main content

Advertisement

Log in

Effect of Pandanus Amaryllifolius Fibre on Physio-Mechanical, Thermal and Biodegradability of Thermoplastic Cassava Starch/Beeswax Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Pandanus amaryllifolius fibre (PAF) is an agricultural waste plant derived from the natural cellulosic source of fibre that can be used in various bio-material applications. In the present study, a novel biodegradable thermoplastic cassava starch/beeswax blends reinforced with Pandanus amaryllifolius fibre (TCPS/BW/PAF) bio-composites were successfully developed at varied Pandanus amaryllifolius fibre concentrations of 0, 10, 20, 30, 40, 50 and 60 wt% while beeswax loading was remained constant at 2.5 wt% concentration using hot moulding compression method. A comprehensive characterisation of TCPS/BW/PAF bio-composites was examined in terms of their physical, mechanical, thermal and biodegradation properties. The addition of Pandanus amaryllifolius fibre has significantly improved tensile strength and tensile modulus at maximum value obtained 10.9 and 606.5 MPa, respectively as well as flexural strength and flexural modulus of bio-composite at maximum value obtained 21.37 and 523.76 MPa, respectively until 50 wt% Pandanus amaryllifolius fibre loading. Surface morphology of the fractured tensile samples PAF10 to PAF50 shows compacted structure and fibre breakage, indicating effective stress transfer from starch matrix to PAF during tensile force application. Furthermore, the addition of Pandanus amaryllifolius fibre improved thermal stability from TG, DTG and DSC results; improved crystallinity from XRD analysis; reduced water and moisture affinity from physical properties testing, and lowered the biodegradation rate. Overall, this study shows the potential of TCPS/BW/PAF bio-composites in biopolymer application and bio-packaging industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Mrowiec B (2017) Plastic pollutants in water environment. Ios-Pib 28:51–55. https://doi.org/10.1515/OsZn-2017-0030

    Article  Google Scholar 

  2. Jahnke A (2020) Could biopolymers answer the single-use problem? Reinf Plast. https://doi.org/10.1016/j.repl.2019.12.090

    Article  Google Scholar 

  3. Samuel BO, Sumaila M, Dan-Asabe B (2022) Multi-objective optimization and modeling of a natural fiber hybrid reinforced composite (PxGyEz ) for wind turbine blade development using grey relational analysis and regression analysis. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2022.2118404

    Article  Google Scholar 

  4. Samuel BO, Sumaila M, Dan-Asabe B (2022) Manufacturing of a natural fiber/glass fiber hybrid reinforced polymer composite (PxGyEz) for high flexural strength: an optimization approach. Int J Adv Manuf Technol 119:2077–2088. https://doi.org/10.1007/s00170-021-08377-5

    Article  Google Scholar 

  5. Samuel B, Sumaila M, Dan-Asabe B (2022) Cellulosic fiber reinforced hybrid composite (PxGyEz) optimization for low water absorption using the robust taguchi optimization technique. J Mek. https://doi.org/10.11113/jm.v45.432

    Article  Google Scholar 

  6. Prabhu P, Karthikeyan B, Vannan RRRM, Balaji A (2021) Dynamic mechanical analysis of silk and glass (S/G/S)/pineapple and glass (P/G/P)/flax and glass (F/G/F) reinforced Lannea coromandelica blender hybrid nano composites. J Mater Res Technol 15:2484–2496. https://doi.org/10.1016/j.jmrt.2021.09.068

    Article  CAS  Google Scholar 

  7. Balaji A, Kannan S, Purushothaman R, Mohanakannan S, Maideen AH, Swaminathan J et al (2022) Banana fiber and particle-reinforced epoxy biocomposites: mechanical, water absorption, and thermal properties investigation. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02829-y

    Article  Google Scholar 

  8. Balaji A, Saravanan R, Purushothaman R, Vijayaraj S, Balasubramanian P (2021) Investigation of thermal energy storage (TES) with lotus stem biocomposite block using PCM. Clean Eng Technol 4:100146. https://doi.org/10.1016/j.clet.2021.100146

    Article  Google Scholar 

  9. Prabhu P, Balaji A, Jayabalakrishnan D, Velmurugan N, Vimalnathan P, Karthikeyan B et al (2022) Study on machining parameters and mechanical properties of hybrid agave sisalana and glass fiber-reinforced polyester composites (A/GFRP). J Nat Fibers 19:11644–11657. https://doi.org/10.1080/15440478.2022.2036288

    Article  CAS  Google Scholar 

  10. Selvaraj M, Mylsamy B (2023) Characterization of new natural fiber from the stem of tithonia diversifolia plant. J Nat Fibers. https://doi.org/10.1080/15440478.2023.2167144

    Article  Google Scholar 

  11. Aruchamy K, Mylsamy B, Palaniappan SK, Subramani SP, Velayutham T, Rangappa SM et al (2023) Influence of weave arrangements on mechanical characteristics of cotton and bamboo woven fabric reinforced composite laminates. J Reinf Plast Compos 42:776–789. https://doi.org/10.1177/07316844221140350

    Article  CAS  Google Scholar 

  12. Tarique J, Sapuan SM, Khalina A, Sherwani SFK, Yusuf J, Ilyas RA (2021) Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: a review. J Mater Res Technol 13:1191–1219. https://doi.org/10.1016/j.jmrt.2021.05.047

    Article  CAS  Google Scholar 

  13. Norfarhana AS, Ilyas RA, Ngadi N (2022) A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydr Polym 291:119563. https://doi.org/10.1016/j.carbpol.2022.119563

    Article  CAS  PubMed  Google Scholar 

  14. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES (2018) Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr Polym 202:186–202. https://doi.org/10.1016/j.carbpol.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  15. Imraan M, Ilyas RA, Norfarhana AS, Bangar SP, Knight VF, Norrrahim MNF (2023) Sugar palm (Arenga pinnata) fibers: new emerging natural fibre and its relevant properties, treatments and potential applications. J Mater Res Technol 24:4551–4572. https://doi.org/10.1016/j.jmrt.2023.04.056

    Article  CAS  Google Scholar 

  16. Azra NA, Atiqah A, Jalar A, Manar G, Supian ABM, Ilyas RA (2023) Sustainable substrate tin oxide/nanofibril cellulose/thermoplastic starch: dimensional stability and tensile properties. J Mater Res Technol 26:99–108. https://doi.org/10.1016/j.jmrt.2023.07.088

    Article  CAS  Google Scholar 

  17. Jumaidin R, Whang LY, Ilyas RA, Hazrati KZ, Hafila KZ, Jamal T et al (2023) Effect of durian peel fiber on thermal, mechanical, and biodegradation characteristics of thermoplastic cassava starch composites. Int J Biol Macromol 250:126295. https://doi.org/10.1016/j.ijbiomac.2023.126295

    Article  CAS  PubMed  Google Scholar 

  18. Balu S, Sampath PS, Bhuvaneshwaran M, Chandrasekar G, Karthik A, Sagadevan S (2020) Dynamic mechanical analysis and thermal analysis of untreated Coccinia indica fiber composites. Polimery 65:357–362. https://doi.org/10.14314/polimery.2020.5.3

    Article  CAS  Google Scholar 

  19. Prabhu P, Karthikeyan B, Vannan RRRM, Balaji A (2022) Mechanical, thermal and morphological analysis of hybrid natural and glass fiber-reinforced hybrid resin nanocomposites. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02632-9

    Article  Google Scholar 

  20. Suriani MJ, Ilyas RA, Zuhri MYM, Khalina A, Sultan MTH, Sapuan SM et al (2021) Critical review of natural fiber reinforced hybrid composites: processing, properties. Appl Cost Polym (Basel) 13:3514. https://doi.org/10.3390/polym13203514

    Article  CAS  Google Scholar 

  21. Norrrahim MNF, Norizan MN, Jenol MA, Farid MAA, Janudin N, Ujang FA et al (2021) Emerging development on nanocellulose as antimicrobial material: an overview. Mater Adv. https://doi.org/10.1039/D1MA00116G

    Article  Google Scholar 

  22. Bangar SP, Whiteside WS, Ashogbon AO, Kumar M (2021) Recent advances in thermoplastic starches for food packaging: a review. Food Packag Shelf Life 30:100743. https://doi.org/10.1016/j.fpsl.2021.100743

    Article  CAS  Google Scholar 

  23. Minh K, Yoksan R, Pollet E, Avérous L (2020) Morphology and properties of thermoplastic starch blended with biodegradable polyester and filled with halloysite nanoclay. Carbohydr Polym 242:116392. https://doi.org/10.1016/j.carbpol.2020.116392

    Article  CAS  Google Scholar 

  24. Fitch-Vargas PR, Camacho-Hernández IL, Martínez-Bustos F, Islas-Rubio AR, Carrillo-Cañedo KI, Calderón-Castro A et al (2019) Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber. Carbohydr Polym 219:378–386. https://doi.org/10.1016/j.carbpol.2019.05.043

    Article  CAS  PubMed  Google Scholar 

  25. Paula A, Lamsal B, Luiz W, Magalhães E, Mottin I (2019) Cassava starch films reinforced with lignocellulose nano fi bers from cassava bagasse. Int J Biol Macromol 139:1151–1161. https://doi.org/10.1016/j.ijbiomac.2019.08.115

    Article  CAS  Google Scholar 

  26. Pérez-Vergara LD, Cifuentes MT, Franco AP, Pérez-Cervera CE, Andrade-Pizarro RD (2020) Development and characterization of edible films based on native cassava starch, beeswax and propolis. NFS J 21:39–49. https://doi.org/10.1016/j.nfs.2020.09.002

    Article  Google Scholar 

  27. Diyana ZN, Jumaidin R, Selamat MZ, Suan MSM (2021) Thermoplastic starch/beeswax blend: characterization on thermal mechanical and moisture absorption properties. Int J Biol Macromol 190:224–232. https://doi.org/10.1016/j.ijbiomac.2021.08.201

    Article  CAS  PubMed  Google Scholar 

  28. Gonçalves J, Filho DO, Cris C, Nobre DO, Regina B, Campos F et al (2020) New approach in the development of edible films: The use of carnauba wax micro- or nanoemulsions in arrowroot starch-based films. Food Packag Shelf Life 26:100589. https://doi.org/10.1016/j.fpsl.2020.100589

    Article  Google Scholar 

  29. Hafila KZ, Jumaidin R, Ilyas RA, Selamat MZ, Yusof FAM (2022) Effect of palm wax on the mechanical, thermal, and moisture absorption properties of thermoplastic cassava starch composites. Int J Biol Macromol 194:851–860. https://doi.org/10.1016/j.ijbiomac.2021.11.139

    Article  CAS  PubMed  Google Scholar 

  30. Syahida N, Fitry I, Zuriyati A, Hanani N (2020) Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100437

    Article  Google Scholar 

  31. Omar-Aziz M, Khodaiyan F, Yarmand MS, Mousavi M, Gharaghani M, Kennedy JF et al (2021) Combined effects of octenylsuccination and beeswax on pullulan films: water-resistant and mechanical properties. Carbohydr Polym 255:117471. https://doi.org/10.1016/j.carbpol.2020.117471

    Article  CAS  PubMed  Google Scholar 

  32. Oliveira M, Bonametti J, Paula A, Zanela J, Victoria M, Grossmann E et al (2018) Industrial crops and products biodegradable trays of thermoplastic starch/poly (lactic acid) coated with beeswax. Ind Crop Prod 112:481–487. https://doi.org/10.1016/j.indcrop.2017.12.045

    Article  CAS  Google Scholar 

  33. Ochoa TA, García-Almendárez BE, Reyes AA, Pastrana DMR, López GFG, Belloso OM et al (2017) Design and characterization of corn starch edible films including beeswax and natural antimicrobials. Food Bioprocess Technol 10:103–114. https://doi.org/10.1007/s11947-016-1800-4

    Article  CAS  Google Scholar 

  34. Han JH, Seo GH, Park IM, Kim GN, Lee DS (2006) Physical and mechanical properties of pea starch edible films containing beeswax emulsions. J Food Sci 71:E290–E296. https://doi.org/10.1111/j.1750-3841.2006.00088.x

    Article  CAS  Google Scholar 

  35. Jhon C, Martha LS, Pati W (2020) Physical-mechanical properties of bamboo fibers-reinforced biocomposites: influence of surface treatment of fibers. J Build Eng 28:101058. https://doi.org/10.1016/j.jobe.2019.101058

    Article  Google Scholar 

  36. Yusof FM, Wahab NA, Abdul Rahman NL, Kalam A, Jumahat A, Mat Taib CF (2019) Properties of treated bamboo fiber reinforced tapioca starch biodegradable composite. Mater Today Proc 16:2367–2373. https://doi.org/10.1016/j.matpr.2019.06.140

    Article  CAS  Google Scholar 

  37. Ferreira DCM, Molina G, Pelissari FM (2020) Biodegradable trays based on cassava starch blended with agroindustrial residues. Compos Part B 185:107682. https://doi.org/10.1016/j.compositesb.2019.107682

    Article  CAS  Google Scholar 

  38. Kaisangsri N, Kerdchoechuen O, Laohakunjit N (2012) Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Ind Crops Prod 37:542–546. https://doi.org/10.1016/j.indcrop.2011.07.034

    Article  CAS  Google Scholar 

  39. Jumaidin R, Khiruddin MAA, Asyul Sutan Saidi Z, Salit MS, Ilyas RA (2020) Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int J Biol Macromol 146:746–755. https://doi.org/10.1016/j.ijbiomac.2019.11.011

    Article  CAS  PubMed  Google Scholar 

  40. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2017) Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites. Int J Biol Macromol 97:606–615. https://doi.org/10.1016/j.ijbiomac.2017.01.079

    Article  CAS  PubMed  Google Scholar 

  41. Pervaiz M, Oakley P, Sain M (2014) Development of novel wax-enabled thermoplastic starch blends and their morphological, thermal and environmental properties. Int J Compos Mater 4:204–212. https://doi.org/10.5923/j.cmaterials.20140405.02

    Article  Google Scholar 

  42. Ren J, Zhang W, Lou F, Wang Y, Guo W (2017) Characteristics of starch-based films produced using glycerol and 1-butyl-3-methylimidazolium chloride as combined plasticizers. Starch/Staerke 69:1–8. https://doi.org/10.1002/star.201600161

    Article  CAS  Google Scholar 

  43. Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2012) A new approach to use arenga pinnata as sustainable biopolymer: effects of plasticizers on physical properties. Procedia Chem 4:254–259. https://doi.org/10.1016/j.proche.2012.06.035

    Article  CAS  Google Scholar 

  44. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029

    Article  CAS  PubMed  Google Scholar 

  45. Asrofi M, Sujito SE, Sapuan SM, Ilyas RA (2020) Improvement of biocomposite properties based tapioca starch and sugarcane bagasse cellulose nanofibers. Key Eng Mater 849:96–101. https://doi.org/10.4028/www.scientific.net/KEM.849.96

    Article  Google Scholar 

  46. Bhattacharjee P, Kshirsagar A, Singhal RS (2005) Supercritical carbon dioxide extraction of 2-acetyl-1-pyrroline from Pandanus amaryllifolius Roxb. Food Chem 91:255–259. https://doi.org/10.1016/j.foodchem.2004.01.062

    Article  CAS  Google Scholar 

  47. Saenthaweesuk S, Naowaboot J, Somparn N (2016) Pandanusamaryllifolius leaf extract increases insulin sensitivity in high-fat diet-induced obese mice. Asian Pac J Trop Biomed 6:866–871. https://doi.org/10.1016/j.apjtb.2016.08.010

    Article  CAS  Google Scholar 

  48. Diyana ZN, Jumaidin R, Selamat MZ, Alamjuri RH, Yusof FA (2021) Extraction and characterization of natural cellulosic fiber from Pandanus amaryllifolius leaves. Polymers (Basel) 13:4171. https://doi.org/10.3390/polym13234171

    Article  CAS  PubMed  Google Scholar 

  49. Rahman WA, Nur S, Sudin A, Din SN (2012) Physical and mechanical properties of Pandanus amaryllifolius fiber reinforced low density polyethylene composite for packaging application. Int Symp Humanit Sci Eng Res 2012:345–349. https://doi.org/10.1109/SHUSER.2012.6268868

    Article  Google Scholar 

  50. Domene-López D, Delgado-Marín JJ, García-Quesada JC, Martín-Gullón I, Montalbán MG (2020) Electroconductive starch/multi-walled carbon nanotube films plasticized by 1-ethyl-3-methylimidazolium acetate. Carbohydr Polym 229:115545. https://doi.org/10.1016/j.carbpol.2019.115545

    Article  CAS  PubMed  Google Scholar 

  51. Herlina N, Sanjay MR, Arpitha GR, Iulian C, Siengchin S (2019) Synthesis and properties of pandanwangi fiber reinforced polyethylene composites: evaluation of dicumyl peroxide (DCP) effect. Compos Commun 15:53–57. https://doi.org/10.1016/j.coco.2019.06.007

    Article  Google Scholar 

  52. Sembiring T, Sinuhaji P, Silitonga RY (2020) Manufacture and characterization of pandan wangi (Pandanus amryllifolius Roxb) fiber-based composite board with epoxy resin. J Technomater Phys 2:1–6

    Article  Google Scholar 

  53. Hazrati KZ, Sapuan SM, Zuhri MYM, Jumaidin R (2021) Preparation and characterization of starch-based biocomposite films reinforced by Dioscorea hispida fibers. J Mater Res Technol 15:1342–1355. https://doi.org/10.1016/j.jmrt.2021.09.003

    Article  CAS  Google Scholar 

  54. Engel JB, Ambrosi A, Tessaro IC (2019) Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydr Polym 225:115234. https://doi.org/10.1016/j.carbpol.2019.115234

    Article  CAS  PubMed  Google Scholar 

  55. Sanjay MR, Arpitha GR, Naik LL, Gopalakrishna K, Yogesha B (2016) Applications of natural fibers and its composites: an overview. Nat Resour 07:108–114. https://doi.org/10.4236/nr.2016.73011

    Article  CAS  Google Scholar 

  56. Boonsuk P, Sukolrat A, Bourkaew S, Kaewtatip K, Chantarak S, Kelarakis A et al (2021) Structure-properties relationships in alkaline treated rice husk reinforced thermoplastic cassava starch biocomposites. Int J Biol Macromol 167:130–140. https://doi.org/10.1016/j.ijbiomac.2020.11.157

    Article  CAS  PubMed  Google Scholar 

  57. Edhirej A, Sapuan SM, Jawaid M, Zahari NI (2017) Cassava/sugar palm fiber reinforced cassava starch hybrid composites: physical, thermal and structural properties. Int J Biol Macromol 101:75–83. https://doi.org/10.1016/j.ijbiomac.2017.03.045

    Article  CAS  PubMed  Google Scholar 

  58. Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2013) Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Mater Des 49:285–289. https://doi.org/10.1016/j.matdes.2013.01.048

    Article  CAS  Google Scholar 

  59. Jumaidin R, Saidi ZAS, Ilyas RA, Ahmad MN, Wahid MK, Yaakob MY et al (2019) Characteristics of cogon grass fibre reinforced thermoplastic cassava starch biocomposite: water absorption and physical properties. J Adv Res Fluid Mech Therm Sci 62(62):43–52

    Google Scholar 

  60. Guleria A, Singha AS, Rana RK (2018) Mechanical, thermal, morphological, and biodegradable studies of okra cellulosic fiber reinforced starch-based biocomposites. Adv Polym Technol 37:104–112. https://doi.org/10.1002/adv.21646

    Article  CAS  Google Scholar 

  61. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2017) Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites. Int J Biol Macromol 99:265–273. https://doi.org/10.1016/j.ijbiomac.2017.02.092

    Article  CAS  PubMed  Google Scholar 

  62. Ilyas RA, Sapuan SM, Atiqah A, Ibrahim R, Abral H, Ishak MR et al (2020) Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: water barrier properties. Polym Compos. https://doi.org/10.1002/pc.25379

    Article  Google Scholar 

  63. Ibrahim MIJ, Sapuan SM, Zainudin ES, Zuhri MYM (2020) Preparation and characterization of cornhusk/sugar palm fiber reinforced Cornstarch-based hybrid composites. J Mater Res Technol 9:200–211. https://doi.org/10.1016/j.jmrt.2019.10.045

    Article  CAS  Google Scholar 

  64. Campos A, Sena Neto AR, Rodrigues VB, Luchesi BR, Mattoso LHC, Marconcini JM (2018) Effect of raw and chemically treated oil palm mesocarp fibers on thermoplastic cassava starch properties. Ind Crops Prod 124:149–154. https://doi.org/10.1016/j.indcrop.2018.07.075

    Article  CAS  Google Scholar 

  65. Lokesh P, Surya Kumari TSA, Gopi R, Loganathan GB (2020) A study on mechanical properties of bamboo fiber reinforced polymer composite. Mater Today Proc 22:897–903. https://doi.org/10.1016/j.matpr.2019.11.100

    Article  CAS  Google Scholar 

  66. Florencia V, López OV, García MA (2020) Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2019.107653

    Article  Google Scholar 

  67. Ilyas RA, Sapuan SM, Ibrahim R, Abral H, Ishak MR, Zainudin ES et al (2020) Thermal, biodegradability and water barrier properties of bio-nanocomposites based on plasticised sugar palm starch and nanofibrillated celluloses from sugar palm fibres. J Biobased Mater Bioenergy 14:234–248. https://doi.org/10.1166/jbmb.2020.1951

    Article  CAS  Google Scholar 

  68. Razali N, Sapuan SM, Jawaid M, Ishak MR, Lazim Y (2016) Mechanical and thermal properties of roselle fibre reinforced vinyl ester composites. BioResources 11:9325–9339. https://doi.org/10.15376/biores.11.4.9325-9339

    Article  CAS  Google Scholar 

  69. Domene-López D, Delgado-Marín JJ, Martin-Gullon I, García-Quesada JC, Montalbán MG (2019) Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3-methylimidazolium acetate as plasticizer. Int J Biol Macromol 135:845–854. https://doi.org/10.1016/j.ijbiomac.2019.06.004

    Article  CAS  PubMed  Google Scholar 

  70. (2022) Malaysians Asia’s Biggest Plastic Consumers. New Straits Time, pp. 5–8

  71. Ilyas RA, Sapuan SM, Ibrahim R, Syafri E, Asrofi M, Herlina N et al (2019) Effect of sugar palm nanofibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch. Integr Med Res 8:4819–4830. https://doi.org/10.1016/j.jmrt.2019.08.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Universiti Teknikal Malaysia Melaka for the financial support provided for this study.

Funding

The authors would like to express their gratitude to Universiti Teknikal Malaysia Melaka (UTeM) for the resources to conduct this study and the financial support offered in the form of grant numbers PJP/2021/FTKMP/S01815.

Author information

Authors and Affiliations

Authors

Contributions

ZND, RJ, MZS, MSMS and KZH wrote the main manuscript text and construct Figures. FAMY, RAI and SME revised and reviewed the manuscript.

Corresponding author

Correspondence to R. Jumaidin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diyana, Z.N., Jumaidin, R., Selamat, M.Z. et al. Effect of Pandanus Amaryllifolius Fibre on Physio-Mechanical, Thermal and Biodegradability of Thermoplastic Cassava Starch/Beeswax Composites. J Polym Environ 32, 1406–1422 (2024). https://doi.org/10.1007/s10924-023-03039-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03039-x

Keywords

Navigation