Skip to main content
Log in

Banana fiber and particle-reinforced epoxy biocomposites: mechanical, water absorption, and thermal properties investigation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biocomposite materials have become increasingly relevant in a range of industrial applications in recent years. Compressive molding was employed in this study to manufacture banana fiber (BF)–reinforced epoxy (E) biocomposites in addition to banana particle (BP)–reinforced epoxy (E) biocomposites. Four distinct composites were created utilizing the stacking series E, E/BF, E/BP, and E/BFP, with 15% BF, BP, and 7.5% of each fiber and particle replaced with 85% E. So for research that has been done on hybrid composite on different fiber–fiber combinations, in this present work, we carried out fiber-particle combinatory composites. The composites’ surface shape, mechanical characteristics, and water absorption capacity were all comprehensively investigated. The results indicate that E/BFP has superior mechanical properties to other samples. The water absorption test was performed on three separate types of water, including ordinary tap water, distilled water, and sea water. Sea water absorbs more water than the other two categories. Additionally, thermal and FT-IR analyses were performed to determine the material’s thermal strength and chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Das O, Bhattacharyya D, Sarmah AK (2016) Sustainable eco–composites obtained from waste derived biochar: a consideration in performance properties, production costs, and environmental impact. J Clean Prod 129:159–168

    Article  Google Scholar 

  2. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581

    Article  CAS  Google Scholar 

  3. Vinod A, Sanjay MR, Suchart S, Jyotishkumar P (2020) Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod 258:120978

    Article  CAS  Google Scholar 

  4. Bibo GA, Hogg PJ, Kemp M (1997) Mechanical characterisation of glass and carbon fiber reinforced composites made with non-crimp fabrics. Compos Sci Technol 57:1221–1241

    Article  CAS  Google Scholar 

  5. Balaji A, Udhayasankar R, Karthikeyan B, Swaminathan J, Purushothaman R (2020) Mechanical and thermal characterization of bagasse fiber/coconut shell particle hybrid biocomposites reinforced with cardanol resin. Results Chem 2:100056

    Article  CAS  Google Scholar 

  6. Dinesh S, Kumaran P, Mohanamurugan S, Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Bhat KS (2020) Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J Polym Res 27(1):1–13

    Article  Google Scholar 

  7. Hanan F, Jawaid M, Paridah MT, Naveen J (2020) Characterization of hybrid oil palm empty fruit bunch/woven Kenaf fabric-reinforced epoxy composites. Polymers 12(9):2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paulraj P, Balakrishnan K, Rajendran RRMV, Alagappan B (2021) Investigation on recent research of mechanical properties of natural fiber reinforced polymer (NFRP) materials. MATERIALE PLASTICE 58(2):100–118

    Article  Google Scholar 

  9. Jagadeesh P, Thyavihalli Girijappa YG, Puttegowda M, Rangappa SM, Siengchin S (2020) Effect of natural filler materials on fiber reinforced hybrid polymer composites: an overview. J Nat Fibers, pp.1–16.

  10. Thyavihalli Girijappa YG, Mavinkere Rangappa S, Parameswaranpillai, J, Siengchin S (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front Mater, p.226.

  11. Arpitha GR, Sanjay MR, Senthamaraikannan P, Barile C, Yogesha B (2017) Hybridization effect of sisal/glass/epoxy/filler based woven fabric reinforced composites. Exp Tech 41(6):577–584

    Article  Google Scholar 

  12. Castel A, François R, Tourneur C (2007) Effect of surface pre-conditioning on bond of carbon fibre reinforced polymer rods to concrete. Cement Concr Compos 29(9):677–689

    Article  Google Scholar 

  13. Sapuan SM, Leenie A, Harimi M, Beng YK (2006) Mechanical properties of woven banana fibre reinforced epoxy composites. Mater Des 27(8):689–693

    Article  CAS  Google Scholar 

  14. Baena M, Torres L, Turon A, Barris C (2009) Experimental study of bond behaviour between concrete and FRP bars using a pull-out test. Compos B Eng 40(8):784–797

    Article  Google Scholar 

  15. Jenish I, Veeramalai Chinnasamy SG, Basavarajappa S, Indran S, Divya D, Liu Y, Sanjay MR, Siengchin S (2020) Tribo-mechanical characterization of carbonized coconut shell micro particle reinforced with Cissus quadrangularis stem fiber/epoxy novel composite for structural application. J Nat Fibers, pp.1–17.

  16. Jayaseelan C, Padmanabhan P, Athijayamani A, Ramanathan K (2021) Effect of mechanical properties on banana macro particle reinforced epoxy composites. Indian J Eng Mater Sci (IJEMS) 27(3):643–648

    Google Scholar 

  17. Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos A Appl Sci Manuf 37(3):423–429

    Article  Google Scholar 

  18. Vinay SS, Sanjay MR, Siengchin S, Venkatesh CV (2021) Effect of Al2O3 nanofillers in basalt/epoxy composites: mechanical and tribological properties. Polym Compos 42(4):1727–1740

    Article  CAS  Google Scholar 

  19. Abhishek S, Sanjay MR, George R, Siengchin S, Parameswaranpillai J, Pruncu CI (2018) Development of new hybrid Phoenix pusilla/carbon/fish bone filler reinforced polymer composites. J Chinese Adv Mater Soc 6(4):553–560

    Article  CAS  Google Scholar 

  20. Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohyd Polym 207:108–121

    Article  Google Scholar 

  21. Madhu P, Sanjay MR, Jawaid M, Siengchin S, Khan A, Pruncu CI (2020) A new study on effect of various chemical treatments on Agave Americana fiber for composite reinforcement: physico-chemical, thermal, mechanical and morphological properties. Polym Testing 85:106437

    Article  CAS  Google Scholar 

  22. Srinivasan VS, Boopathy SR, Sangeetha D, Ramnath BV (2014) Evaluation of mechanical and thermal properties of banana–flax based natural fibre composite. Mater Des 60:620–627

    Article  CAS  Google Scholar 

  23. Huang Z, Wang N, Zhang Y, Hu H, Luo Y (2012) Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly (vinyl chloride) composites. Compos A Appl Sci Manuf 43(1):114–120

    Article  Google Scholar 

  24. Balaji A, Karthikeyan B, Swaminathan J, Raj CS (2018) Effect of filler content of chemically treated short bagasse fiber-reinforced cardanol polymer composites. J Nat Fibers.

  25. Balaji A, Sivaramakrishnan K, Karthikeyan B, Purushothaman R, Swaminathan J, Kannan S, Udhayasankar R, Madieen AH (2019) Study on mechanical and morphological properties of sisal/banana/coir fiber-reinforced hybrid polymer composites. J Braz Soc Mech Sci Eng 41(9):1–10

    Article  CAS  Google Scholar 

  26. Kumari S, Kumar R, Rai B, Kumar G (2021) Morphology and biodegradability study of natural latex-modified polyester–banana fiber composites. J Nat Fibers 18(5):763–771

    Article  CAS  Google Scholar 

  27. Liu GR (1997) A step-by-step method of rule-of-mixture of fiber-and particle-reinforced composite materials. Compos Struct 40(3–4):313–322

    Article  Google Scholar 

  28. Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64(7–8):955–965

    Article  CAS  Google Scholar 

  29. Gassan J, Bledzki AK (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos Sci Technol 59(9):1303–1309

    Article  CAS  Google Scholar 

  30. Raja AK, Geethan K, Kumar SS, Kumar PS (2021) Influence of mechanical attributes, water absorption, heat deflection features and characterization of natural fibers reinforced epoxy hybrid composites for an engineering application. Fibers Polym, pp.1–12.

  31. Udhayasankar R, Karthikeyan B, Balaji A (2020) Comparative mechanical, thermal properties and morphological study of untreated and NaOH-treated coconut shell-reinforced cardanol environmental friendly green composites. J Adhes Sci Technol 34(16):1720–1740

    Article  CAS  Google Scholar 

  32. Shibata S, Cao Y, Fukumoto I (2005) Effect of bagasse fiber on the flexural properties of biodegradable composites. Polym Compos 26(5):689–694

    Article  CAS  Google Scholar 

  33. Swaminathan J, Ramalingam M, Sundaraganesan N (2009) Molecular structure and vibrational spectra of 3-amino-5-hydroxypyrazole by density functional method. Spectrochim Acta Part A Mol Biomol Spectrosc 71(5):1776–1782

    Article  ADS  CAS  Google Scholar 

  34. Liyanage CD, Pieris M (2015) A physico-chemical analysis of coconut shell powder. Procedia Chemistry 16:222–228

    Article  CAS  Google Scholar 

  35. Priyanka SP (2013) Effect of water absorption on interface and tensile properties of banana fibre reinforced functionalized polypropylene (BF/CFPP) composites developed by Palsule process. Appl Polym Compos 1(2):103–113

    Google Scholar 

  36. Jacob M, Varughese KT, Thomas S (2005) Water sorption studies of hybrid biofiber-reinforced natural rubber biocomposites. Biomacromol 6(6):2969–2979

    Article  CAS  Google Scholar 

  37. Balaji A, Saravanan R, Purushothaman R, Vijayaraj S, Balasubramanian P (2021) Investigation of thermal energy storage (TES) with lotus stem biocomposite block using PCM. Cleaner Eng Technol, p.100146.

  38. Chollakup R, Tantatherdtam R, Ujjin S, Sriroth K (2011) Pineapple leaf fiber reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics. J Appl Polym Sci 119(4):1952–1960

    Article  CAS  Google Scholar 

  39. Silva GG, De Souza DA, Machado JC, Hourston DJ (2000) Mechanical and thermal characterization of native Brazilian coir fiber. J Appl Polym Sci 76(7):1197–1206

    Article  CAS  Google Scholar 

  40. Kučerík J, Průšová A, Rotaru A, Flimel K, Janeček J, Conte P (2011) DSC study on hyaluronan drying and hydration. Thermochim Acta 523(1–2):245–249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Balaji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, A., Kannan, S., Purushothaman, R. et al. Banana fiber and particle-reinforced epoxy biocomposites: mechanical, water absorption, and thermal properties investigation. Biomass Conv. Bioref. 14, 7835–7845 (2024). https://doi.org/10.1007/s13399-022-02829-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02829-y

Keywords

Navigation