Skip to main content

Advertisement

Log in

Novel sesame oil cake biomass waste derived cellulose micro-fillers reinforced with basalt/banana fibre-based hybrid polymeric composite for lightweight applications

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The hand layup-cum-compression moulding method was employed to create a novel polyester-based hybrid composite by reinforcing basalt/banana fibres with a sesame oil cake-derived cellulose (sesame cake cellulose, SCC) filler, and its mechanical, moisture absorption, thermal and analytical characteristics were investigated as a function of SCC weight percentage (0–10 wt.%). The polyester matrix fabrication method, volume fractions, and varying percentages of SCC filler were used to create five types of hybrid composites. The structure modification was investigated using analytical methods such as Fourier-transform infrared spectroscopy, scanning electron microscope (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). From the information collected for this study, the supplement of SCC significantly enhanced the mechanical and thermal properties because it provided the greatest load transfer among the fillers, fibres, and polyester matrix components. The outcomes of thermal stability investigation revealed that the newly created polyester-based hybrid composites were more robust to temperature changes than the pure polymer sample. The extreme tensile, flexural, and impact properties of the composites with 5 wt.% SCC were 48.83.89 ± 3.073 MPa, 234.14 ± 9.3.6 MPa, and 70.93 ± 3.8 kJ/m2 respectively. The SEM study further showed that there was homogeneous distribution degree of matrix-reinforcement bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Atmakuri A, Palevicius A, Vilkauskas A, Janusas G (2020) Review of hybrid fiber based composites with nano particles-material properties and applications. Polymers (Basel) 12:2088. https://doi.org/10.3390/POLYM12092088

    Article  Google Scholar 

  2. Arun Prasath K, Radha Krishnan B (2013) Mechanical properties of woven fabric basalt/jute fibre. Int J Mech Enginering Robot Res 2:279–290

    Google Scholar 

  3. Sun G, Tong S, Chen D et al (2018) Mechanical properties of hybrid composites reinforced by carbon and basalt fibers. Int J Mech Sci 148:636–651. https://doi.org/10.1016/j.ijmecsci.2018.08.007

    Article  Google Scholar 

  4. Gupta MK, Srivastava RK (2016) Mechanical properties of hybrid fibers-reinforced polymer composite: a review. Polym - Plast Technol Eng 55:626–642. https://doi.org/10.1080/03602559.2015.1098694

    Article  Google Scholar 

  5. Nisini E, Santulli C, Liverani A (2017) Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres. Compos Part B Eng 127:92–99. https://doi.org/10.1016/j.compositesb.2016.06.071

    Article  Google Scholar 

  6. Oguz O, Candau N, Demongeot A et al (2021) Poly(lactide)/cellulose nanocrystal nanocomposites by high-shear mixing. Polym Eng Sci 61:1028–1040. https://doi.org/10.1002/pen.25621

    Article  Google Scholar 

  7. Arshad MN, Mohit H, Sanjay MR et al (2021) Effect of coir fiber and TiC nanoparticles on basalt fiber reinforced epoxy hybrid composites: physico–mechanical characteristics. Cellulose 28:3451–3471. https://doi.org/10.1007/s10570-021-03752-7

    Article  Google Scholar 

  8. Mazur K, Jakubowska P, Romańska P, Kuciel S (2020) Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications. Compos Part B Eng 202:108399. https://doi.org/10.1016/j.compositesb.2020.108399

    Article  Google Scholar 

  9. Venkateshwar Reddy P, Rajendra Prasad P, Mohana Krishnudu D, Hussain P (2019) Influence of fillers on mechanical properties of prosopis juliflora fiber reinforced hybrid composites. Mater Today Proc 19:384–387. https://doi.org/10.1016/j.matpr.2019.07.618

    Article  Google Scholar 

  10. Artemenko SE (2003) Polymer composite materials made from carbon, basalt, and glass fibres. Structure and properties Fibre Chem 35:226–229. https://doi.org/10.1023/A:1026170209171

    Article  Google Scholar 

  11. Saiteja J, Jayakumar V, Bharathiraja G (2020) Evaluation of mechanical properties of jute fiber/carbon nano tube filler reinforced hybrid polymer composite. Mater Today Proc 22:756–758. https://doi.org/10.1016/j.matpr.2019.10.110

    Article  Google Scholar 

  12. Gupta G, Gupta A, Dhanola A, Raturi A (2016) Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers. IOP Conf Ser Mater Sci Eng 149:012091. https://doi.org/10.1088/1757-899X/149/1/012091

    Article  Google Scholar 

  13. Sumesh KR, Kanthavel K, Kavimani V (2020) Machinability of hybrid natural fiber reinforced composites with cellulose micro filler incorporation. J Compos Mater 54:3655–3671. https://doi.org/10.1177/0021998320918020

    Article  Google Scholar 

  14. Jagadeesh P, Thyavihalli Girijappa YG, Puttegowda M et al (2020) Effect of natural filler materials on fiber reinforced hybrid polymer composites: an overview. J Nat Fibers 00:1–16. https://doi.org/10.1080/15440478.2020.1854145

    Article  Google Scholar 

  15. Abdellaoui H, Raji M, Essabir H, Bouhfid R, el kacem Qaiss A (2016) 6 - mechanical behavior of carbon/natural fiber-based hybrid composites. In: Jawaid M, Thariq M, Saba N (eds) Woodhead Publishing series in composites science and engineering, mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, pp 103–122. https://doi.org/10.1016/B978-0-08-102292-4.00006-0

  16. Vivek S, Kanthavel K, Torris A, Kavimani V (2020) Effect of bio-filler on hybrid sisal-banana-kenaf-flax based epoxy composites: a statistical correlation on flexural strength. J Bionic Eng 17:1263–1271. https://doi.org/10.1007/s42235-020-0083-7

    Article  Google Scholar 

  17. Ferreira FV, Mariano M, Pinheiro IF et al (2019) Cellulose nanocrystal-based poly(butylene adipate-co-terephthalate) nanocomposites covered with antimicrobial silver thin films. Polym Eng Sci 59:E356–E365. https://doi.org/10.1002/pen.25066

    Article  Google Scholar 

  18. Arpitha GR, Verma A, Sanjay MR, Gorbatyuk S, Khan A, Sobahi TR, Asiri AM, Siengchin S (2022) Bio-composite film from corn starch based vetiver cellulose. J Nat Fibers. https://doi.org/10.1080/15440478.2022.2068174

  19. Banerjee S, Sankar BV (2014) Mechanical properties of hybrid composites using finite element method based micromechanics. Compos Part B Eng 58:318–327. https://doi.org/10.1016/j.compositesb.2013.10.065

    Article  Google Scholar 

  20. Parikh HH, Soni HP, Suthar DA, Patel DH (2019) Mechanical and tribological characterization of hybrid natural fiber reinforced composites. Curr Mater Sci 12:136–143. https://doi.org/10.2174/1874464812666190919091045

    Article  Google Scholar 

  21. Pryputniewicz RJ, Furlong C, Pryputniewicz EJ (2003) Analytical and experimental characterization of an optical MEMS device. Proc SPIE - Int Soc Opt Eng 5288:774–779

    Google Scholar 

  22. Bin BMK, Jayamani E, Hamdan S (2017) Processing and characterization of banana fiber/epoxy composites: effect of alkaline treatment. Mater Today Proc 4:2871–2878. https://doi.org/10.1016/j.matpr.2017.02.167

    Article  Google Scholar 

  23. Diani J, Liu Y, Gall K (2006) Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polym Eng Sci 46:486–492. https://doi.org/10.1002/pen.20497

    Article  Google Scholar 

  24. Ranganagowda RPG, Kamath SS, Bennehalli B (2019) Extraction and characterization of cellulose from natural areca fiber. Mater Sci Res India 16:86–93. https://doi.org/10.13005/msri/160112

    Article  Google Scholar 

  25. Orr MP, Sonekan A, Shofner ML (2020) Effect of processing method on cellulose nanocrystal/polyethylene-co-vinyl alcohol composites. Polym Eng Sci 60:2979–2990. https://doi.org/10.1002/pen.25527

    Article  Google Scholar 

  26. Oksman K, Selin JF (2004) Plastics and composites from polylactic acid. Kluwer Academic Press, Berlin

  27. Wan YZ, Chen GC, Huang Y et al (2005) Characterization of three-dimensional braided carbon/Kevlar hybrid composites for orthopedic usage. Mater Sci Eng A 398:227–232. https://doi.org/10.1016/j.msea.2005.03.010

    Article  Google Scholar 

  28. Haneefa A, Bindu P, Aravind I, Thomas S (2008) Studies on tensile and flexural properties of short banana/glass hybrid fiber reinforced polystyrene composites. J Compos Mater 42:1471–1489. https://doi.org/10.1177/0021998308092194

    Article  Google Scholar 

  29. Fragassa C, Pavlovic A, Santulli C (2018) Mechanical and impact characterisation of flax and basalt fibre vinylester composites and their hybrids. Compos Part B Eng 137:247–259. https://doi.org/10.1016/j.compositesb.2017.01.004

    Article  Google Scholar 

  30. Wang B, Liu J, Chen K et al (2020) Three-dimensional printing of methacrylic grafted cellulose nanocrystal-reinforced nanocomposites with improved properties. Polym Eng Sci 60:782–792. https://doi.org/10.1002/pen.25336

    Article  Google Scholar 

  31. Rastogi S, Verma A, Singh VK (2020) Experimental response of nonwoven waste cellulose fabric–reinforced epoxy composites for high toughness and coating applications. Mater Perform Charact 9:151–172

    Google Scholar 

  32. Pei X, Han W, Ding G et al (2019) Temperature effects on structural integrity of fiber-reinforced polymer matrix composites: a review. J Appl Polym Sci 136:1–19. https://doi.org/10.1002/app.48206

    Article  Google Scholar 

  33. Ahmad F, Yuvaraj N, Bajpai PK (2020) Effect of reinforcement architecture on the macroscopic mechanical properties of fiberous polymer composites: a review. Polym Compos 41:2518–2534. https://doi.org/10.1002/pc.25666

    Article  Google Scholar 

  34. Osman AF, Ashafee AMTL, Adnan SA, Alakrach A (2020) Influence of hybrid cellulose/bentonite fillers on structure, ambient, and low temperature tensile properties of thermoplastic starch composites. Polym Eng Sci 60:810–822. https://doi.org/10.1002/pen.25340

    Article  Google Scholar 

  35. Maleki SS, Mohammadi K, Ji KS (2016) Characterization of cellulose synthesis in plant cells. Sci World J 2016:8641373. https://doi.org/10.1155/2016/8641373

    Article  Google Scholar 

  36. Suthan R, Jayakumar V, Bharathiraja G (2020) Wear analysis of bio-fillers reinforced epoxy composites. Mater Today Proc 22:793–798. https://doi.org/10.1016/j.matpr.2019.10.154

    Article  Google Scholar 

  37. Soltani E, Shahrousvand M, Babaei A (2018) An investigation on the reinforcement mechanism of the nano-sized carbonaceous filled epoxy-glass fiber hybrid-composites through analysis of fracture surfaces. Polym Compos 39:E2460–E2471. https://doi.org/10.1002/pc.24757

    Article  Google Scholar 

  38. Arpitha GR, Verma A, Sanjay MR, Siengchin S (2021) Preparation and experimental investigation on mechanical and tribological performance of hemp-glass fiber reinforced laminated composites for lightweight applications. Adv Civ Eng Mater 10:427–439

    Google Scholar 

  39. Mamat Razali NA, Ismail MF, Abdul Aziz F (2021) Characterization of nanocellulose from Indica rice straw as reinforcing agent in epoxy-based nanocomposites. Polym Eng Sci 61:1594–1606. https://doi.org/10.1002/pen.25683

    Article  Google Scholar 

  40. Reddy KO, Uma Maheswari C, Muzenda E et al (2016) Extraction and characterization of cellulose from pretreated ficus (peepal tree) leaf fibers. J Nat Fibers 13:54–64. https://doi.org/10.1080/15440478.2014.984055

    Article  Google Scholar 

  41. Andrzejewski J, Misra M, Mohanty AK (2018) Polycarbonate biocomposites reinforced with a hybrid filler system of recycled carbon fiber and biocarbon: preparation and thermomechanical characterization. J Appl Polym Sci 135:1–14. https://doi.org/10.1002/app.46449

    Article  Google Scholar 

  42. Verma A, Jain N, Parashar A, Singh VK, Sanjay MR, Siengchin S (2020) Design and modeling of lightweight polymer composite structures. In: Lightweight polymer composite structures. CRC Press, pp 193–224. https://doi.org/10.1201/9780429244087

  43. Verma A, Budiyal L, Sanjay MR, Siengchin S (2019) Processing and characterization analysis of pyrolyzed oil rubber (from waste tires)-epoxy polymer blend composite for lightweight structures and coatings applications. Polym Eng Sci 59:2041–2051. https://doi.org/10.1002/pen.25204

    Article  Google Scholar 

  44. Gangil B, Ranakoti L, Verma S, Singh T, Kumar S (2020) Natural and synthetic fibers for hybrid composites. In: Hybrid fiber composites: materials, manufacturing, process engineering, pp 1–15. https://doi.org/10.1002/9783527824571.ch1

  45. Bazan P, Nosal P, Kozub B, Kuciel S (2020) Biobased polyethylene hybrid composites with natural fiber: mechanical, thermal properties, and micromechanics. Materials (Basel) 13:1–16. https://doi.org/10.3390/ma13132967

    Article  Google Scholar 

  46. Wu YR, Chang CW, Chang KC et al (2019) Effect of micro-/nano-hybrid hydroxyapatite rod reinforcement in composite resins on strength through thermal cycling. Polym Compos 40:3703–3710. https://doi.org/10.1002/pc.25232

    Article  Google Scholar 

  47. Tang T, Zhu J, Wang W, Ni H (2019) Morphology, thermal, and crystallization properties of poly(butylene succinate)-grafted nanocrystalline cellulose by polymerization in situ. Polym Eng Sci 59:928–934. https://doi.org/10.1002/pen.25038

    Article  Google Scholar 

  48. Martínez MG, Couce AA, Dupont C et al (2022) Torrefaction of cellulose, hemicelluloses and lignin extracted from woody and agricultural biomass in TGA-GC/MS: linking production profiles of volatile species to biomass type and macromolecular composition. Ind Crops Prod 176:114350

    Article  Google Scholar 

  49. Martinez Martinez Toledo AL, da Rocha Rodrigues EJ, Dutra Filho JC et al (2020) Study of C─H⋯O bond of organic–inorganic hybrids based on polyhydroxybutyrate and oxides obtained via an in situ sol–gel route. Polym Eng Sci 60:673–681. https://doi.org/10.1002/pen.25325

    Article  Google Scholar 

  50. Cebrián-Lloret V, Metz M, Martínez-Abad A et al (2022) Valorization of alginate-extracted seaweed biomass for the development of cellulose-based packaging films. Algal Res 61:102576

    Article  Google Scholar 

  51. Almashhadani AQ, Leh CP, Chan SY, Lee CY, Goh CF (2022) Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: importance of hydrolysis parameters. Carbohydr Polym: 119285. https://doi.org/10.1016/j.carbpol.2022.119285

  52. Sari NH, Suteja IRA et al (2021) Characterization of the density and mechanical properties of corn husk fiber reinforced polyester composites after exposure to ultraviolet light. Funct Compos Struct 3:034001. https://doi.org/10.1088/2631-6331/ac0ed3

    Article  Google Scholar 

  53. Martins MA, Teixeira EM, Corrêa AC et al (2011) Extraction and characterization of cellulose whiskers from commercial cotton fibers. J Mater Sci 46:7858–7864. https://doi.org/10.1007/s10853-011-5767-2

    Article  Google Scholar 

  54. Selvaraj V, Raghavarshini TR, Alagar M (2020) Development and characterization of palm flower carbon reinforced DOPO-urea diamine based cardanol benzoxazine-epoxy hybrid composites. Polym Eng Sci 60:732–739. https://doi.org/10.1002/pen.25331

    Article  Google Scholar 

  55. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1%3c1::AID-MAME1%3e3.0.CO;2-W

    Article  Google Scholar 

  56. Sreenivasan VS, Ravindran D, Manikandan V, Narayanasamy R (2012) Influence of fibre treatments on mechanical properties of short Sansevieria cylindrica/polyester composites. Mater Des 37:111–121. https://doi.org/10.1016/j.matdes.2012.01.004

    Article  Google Scholar 

  57. Zhang K, Wang F, Pang Y et al (2019) High residual mechanical properties at elevated temperatures of bamboo/glass reinforced-polybenzoxazine hybrid composite. Polym Eng Sci 59:1818–1829. https://doi.org/10.1002/pen.25182

    Article  Google Scholar 

  58. Indran S, Raj RE, Daniel BSS, Saravanakumar SS (2016) Cellulose powder treatment on Cissus quadrangularis stem fiber-reinforcement in unsaturated polyester matrix composites. J Reinf Plast Compos 35:212–227. https://doi.org/10.1177/0731684415611756

    Article  Google Scholar 

  59. Ramakrishnan G, Ramnath BV, Elanchezhian C et al (2019) Investigation of mechanical behaviour of basalt-banana hybrid composites. Silicon 11:1939–1948. https://doi.org/10.1007/s12633-018-0009-8

    Article  Google Scholar 

  60. Venkateshwaran N, Alavudeen A, Santhanam V (2018) Tribological characterization of jute/glass hybrid composites. In: Synthesis and tribological applications of hybrid materials, pp 71. https://doi.org/10.1002/9783527808588.ch4

  61. Mohanty AK, Vivekanandhan S, Pin JM, Misra M (2018) Composites from renewable and sustainable resources: challenges and innovations. Science (80- ) 362:536–542. https://doi.org/10.1126/science.aat9072

    Article  Google Scholar 

  62. Petrucci R, Santulli C, Puglia D et al (2015) Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Compos Part B Eng 69:507–515. https://doi.org/10.1016/j.compositesb.2014.10.031

    Article  Google Scholar 

  63. Chandgude S, Salunkhe S (2020) Biofiber-reinforced polymeric hybrid composites: an overview on mechanical and tribological performance. Polym Compos 41:3908–3939. https://doi.org/10.1002/pc.25801

    Article  Google Scholar 

  64. Forsgren L, Berglund J, Thunberg J et al (2020) Injection molding and appearance of cellulose-reinforced composites. Polym Eng Sci 60:5–12. https://doi.org/10.1002/pen.25253

    Article  Google Scholar 

  65. Mochane MJ, Mokhena TC, Mokhothu TH et al (2019) Recent progress on natural fiber hybrid composites for advanced applications: a review. Express Polym Lett 13:159–198. https://doi.org/10.3144/expresspolymlett.2019.15

    Article  Google Scholar 

  66. Várdai R, Ferdinánd M, Lummerstorfer T et al (2021) Effect of various organic fibers on the stiffness, strength and impact resistance of polypropylene; a comparison. Polym Int 70:145–153. https://doi.org/10.1002/pi.6105

    Article  Google Scholar 

  67. Wei B, Cao H, Song S (2011) Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater. Corros Sci 53:426–431. https://doi.org/10.1016/j.corsci.2010.09.053

    Article  Google Scholar 

  68. Singh H, Singh T (2019) Effect of fillers of various sizes on mechanical characterization of natural fiber polymer hybrid composites: a review. Mater Today Proc 18:5345–5350. https://doi.org/10.1016/j.matpr.2019.07.560

    Article  Google Scholar 

  69. Yiga VA, Lubwama M, Pagel S et al (2021) Flame retardancy and thermal stability of agricultural residue fiber-reinforced polylactic acid: a review. Polym Compos 42:15–44. https://doi.org/10.1002/pc.25835

    Article  Google Scholar 

  70. Indran S, Edwin Raj RD, Daniel BSS, Binoj JS (2018) Comprehensive characterization of natural Cissus quadrangularis stem fiber composites as an alternate for conventional FRP composites. J Bionic Eng 15:914–923. https://doi.org/10.1007/s42235-018-0078-9

    Article  Google Scholar 

  71. Patel N, Patel K, Gohil P, Chaudhry V (2018) Investigations on mechanical strength of hybrid basalt/glass polyester composites. Int J Appl Eng Res 13(6):4083–4088

    Google Scholar 

  72. Asim M, Saba N, Jawaid M, Nasir M (2018) Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. In: Sustainable composites for aerospace applications. Woodhead Publishing, pp 253–268. https://doi.org/10.1016/B978-0-08-102131-6.00012-8

  73. Arun Prakash VR, Viswanthan R (2019) Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite. Compos Part A Appl Sci Manuf 118:317–326. https://doi.org/10.1016/j.compositesa.2019.01.008

    Article  Google Scholar 

  74. Puttegowda M, Thyavihalli Girijappa YG, Mavinkere Rangappa S, Parameswaranpillai J, Siengchin S (2020) Effect of process engineering on the performance of hybrid fiber composites. In: Hybrid fiber composites: materials, manufacturing, process engineering, pp 17–40. https://doi.org/10.1002/9783527824571.ch2

  75. Nakaramontri Y, Kummerlöwe C, Vennemann N et al (2018) Electron tunneling in carbon nanotubes and carbon black hybrid filler-filled natural rubber composites: influence of non-rubber components. Polym Compos 39:E1237–E1250. https://doi.org/10.1002/pc.24821

    Article  Google Scholar 

  76. Radotić K, Mićić M (2016) Methods for extraction and purification of lignin and cellulose from plant tissues. In: Sample preparation techniques for soil, plant, and animal samples. Humana Press, New York, pp 365–376. https://doi.org/10.1007/978-1-4939-3185-9_26

Download references

Acknowledgements

First author acknowledges the Rohini College of Engineering and Technology, Shiv Kumar—copyeditor, and RadoChemMAX, Nagercoil for providing research lab facilities to carry out his research work.

Author information

Authors and Affiliations

Authors

Contributions

RJ—conceptualization, investigation, methodology, writing original draft, visualization and data curation. SI—resources, formal analysis, validation, writing—review and editing, project administration, supervision. DD—visualization and supported for data interpretation. SS—resources, complete analysis of the work with technical correction.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The author(s) declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeesan, R., Suyambulingam, I., Divakaran, D. et al. Novel sesame oil cake biomass waste derived cellulose micro-fillers reinforced with basalt/banana fibre-based hybrid polymeric composite for lightweight applications. Biomass Conv. Bioref. 13, 4443–4458 (2023). https://doi.org/10.1007/s13399-022-03570-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03570-2

Keywords

Navigation