Skip to main content
Log in

Effect of Polycaprolactone Microplastics on Soil Microbial Communities and Plant Growth

  • Research
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Microplastics (MPs), especially those of biodegradable plastic origin, have received sufficient attention. However, the effects of polycaprolactone (PCL) microplastics on soil microbial communities and plant growth have not been fully explored. The study aimed to evaluate the effect of MPs on soil microbial communities and plant growth. We performed 16 S rDNA high-throughput sequencing to analyze the soil bacterial composition after exposure to different concentration PCL-MPs(0.02, 0.2 and 2%, W/W) for 30 days. Additionally, we conducted pot experiments to investigate the effect of soil with PCL-MPs on the growth of oilseed rape and lettuce. According to α-diversity analysis, the presence of PCL-MPs did not have an impact on the structure and diversity of the soil microbial community, and there was no significant difference in microbial communities between soils containing different with varying concentrations of PCL-MPs based on β-diversity analysis. However, the relative abundance of Proteobacteria decreased and Acidobacteria increased in soils with low and medium concentrations of PCL-MPs. Despite this change, the dominant species (Actinobacteria, Acidobacteria, Proteobacteria, and Chloroflexi) remained unchanged in each sample in terms of relative abundance and order. The pot experiments revealed that that PCL-MPs caused a temporary decrease in soluble protein in the leaves of both oilseed rape and lettuce, but this effect disappeared over time. The chlorophyll levels in both plants were not significantly affected by PCL-MPs. However, there was a significant difference in MDA levels, with no effect on oilseed rape but a reduction in lettuce. PCL-MPs also caused a decrease in POD in both plants. Based on these results, it can be concluded that PCL-MPs do not have an impact on soil microbial communities and the growth of oilseed rape and lettuce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zaaba NF, Jaafar M (2020) Polym Eng Sci 60:2061–2075

    Article  CAS  Google Scholar 

  2. Sintim HY, Flury M (2017) Environ Sci Technol 51:1068–1069

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Brodhagen M, Peyron M, Miles C, Inglis DA (2015) Appl Microbiol Biotechnol 99:1039–1056

    Article  CAS  PubMed  Google Scholar 

  4. Natta FJ, v, Hill JW, Carothers WH (1934) J Am Chem Soc 56:455–457

    Article  Google Scholar 

  5. Schmitt PR, Dwyer KD, Coulombe KLK (2022) ACS Appl Bio Mater 5:2461–2480

    Article  CAS  PubMed  Google Scholar 

  6. Lyu JS, Lee J-S, Han J (2019) Sci Rep 9:20236

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang N, Ying L, Li K, Chen F, Zhao F, Sun Z, Feng L, Liu J (2022) Polymers 14:5340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Massella D, Leone F, Peila R, Barresi AA, Ferri A (2018) J Funct Biomaterials 9:1

    Google Scholar 

  9. Othman NAF, Selambakkannu S, Seko N (2022) Energy Nexus 8:100137

    Article  CAS  Google Scholar 

  10. Boots B, Russell CW, Green DS (2019) Environ Sci Technol 53:11496–11506

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Liu J, Wang P, Wang Y, Zhang Y, Xu T, Zhang Y, Xi J, Hou L, Li L, Zhang Z, Lin Y (2022) J Hazard Mater 437:129294

    Article  CAS  PubMed  Google Scholar 

  12. Wang F, Zhang X, Zhang S, Zhang S, Sun Y (2020) Chemosphere 254:126791

    Article  CAS  PubMed  Google Scholar 

  13. Bakker MG, Chaparro JM, Manter DK, Vivanco JM (2015) Plant Soil 392:115–126

    Article  CAS  Google Scholar 

  14. Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1998) Soil Biol Biochem 31:145–153

    Article  Google Scholar 

  15. Masui A, Ikawa S, Fujiwara N, Hirai H (2011) J Polym Environ 19:622–627

    Article  CAS  Google Scholar 

  16. Seeley ME, Song B, Passie R, Hale RC (2020) Nat Commun 11:2372

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu M, Song Y, Lu S, Qiu R, Hu J, Li X, Bigalke M, Shi H, He D (2019) Sci Total Environ 691:341–347

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC (2008) PLoS ONE 3:e2527

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Zhang M, Zhao Y, Qin X, Jia W, Chai L, Huang M, Huang Y (2019) Sci Total Environ 688:470–478

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Ren X, Tang J, Liu X, Liu Q (2020) Environ Pollut 256:113347

    Article  CAS  PubMed  Google Scholar 

  21. Eilers KG, Lauber CL, Knight R, Fierer N (2010) Soil Biol Biochem 42:896–903

    Article  CAS  Google Scholar 

  22. Li L, Lin X, Bao J, Xia H, Li F (2022) Front Bioeng Biotechnol 10:835847

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mandic M, Spasic J, Ponjavic M, Nikolic MS, Cosovic VR, O’Connor KE, Nikodinovic-Runic J, Djokic L, Jeremic S (2019) Polym Degrad Stab 162:160–168

    Article  CAS  Google Scholar 

  24. Suzuki M, Tachibana Y, Oba K, Takizawa R, Kasuya K-i (2018) Polym Degrad Stab 149:1–8

    Article  CAS  Google Scholar 

  25. Yoon Y, Park H, An S, Ahn J-H, Kim B, Shin J, Kim Y-e, Yeon J, Chung J-h, Kim D, Cho M (2023) J Environ Manage 335:117493

    Article  CAS  PubMed  Google Scholar 

  26. Khatiwala VK, Shekhar N, Aggarwal S, Mandal UK (2008) J Polym Environ 16:61–67

    Article  CAS  Google Scholar 

  27. Li H-Z, Zhu D, Lindhardt JH, Lin S-M, Ke X, Cui L (2021) Environ Sci Technol 55:4658–4668

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Tian Z, Liu B, Zhang W, Liang F, Wu J, Song Z, Zhu Y (2023) Polyethylene microplastic particles alter the nature, bacterial community and metabolite profile of reed rhizosphere soils. In: Water. doi:https://doi.org/10.3390/w15081505

  29. Lian Y, Liu W, Shi R, Zeb A, Wang Q, Li J, Zheng Z, Tang J (2022) J Hazard Mater 435:129057

    Article  CAS  PubMed  Google Scholar 

  30. Morgan JB (2013) Nat Educ Knowl 4:2

    Google Scholar 

  31. Sun H, Shi Y, Zhao P, Long G, Li C, Wang J, Qiu D, Lu C, Ding Y, Liu L, He S (2023) Sci Total Environ 868:161557

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Colzi I, Renna L, Bianchi E, Castellani MB, Coppi A, Pignattelli S, Loppi S, Gonnelli C (2022) J Hazard Mater 423:127238

    Article  CAS  PubMed  Google Scholar 

  33. Wang P, Richter AS, Kleeberg JRW, Geimer S, Grimm B (2020) Nat Commun 11:1254

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Y, Liu X, Shinde S, Wang J, Zhang P (2021) Front Microbiol 12:773226

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li Z, Li Q, Li R, Zhao Y, Geng J, Wang G (2020) Environ Sci Pollut Res 27:30306–30314

    Article  CAS  Google Scholar 

  36. Morales M, Munné-Bosch S (2019) Plant Physiol 180:1246–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ugya AY, Meguellati K, Aliyu AD, Abba A, Musa MA (2022) Environ Pollutants Bioavailab 34:51–60

    Article  CAS  Google Scholar 

  38. Chen M, Nan J, Xu Y, Yao J, Wang H, Zu X (2022) Sep Purif Technol 288:120632

    Article  CAS  Google Scholar 

  39. Zhang Q, Zhao M, Meng F, Xiao Y, Dai W, Luan Y (2021) Toxics 9:179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gong W, Zhang W, Jiang M, Li S, Liang G, Bu Q, Xu L, Zhu H, Lu A (2021) Sci Total Environ 796:148750

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobučar G (2019) Environ Pollut 250:831–838

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 32270117) and the Talent Program of Shenyang Agricultural University (Grant No. 2021Y001).

Author information

Authors and Affiliations

Authors

Contributions

ML : Formal analysis, Data Curation, Writing—Original Draft, VisualisationQM: Formal analysis, Investigation, Data Curation, VisualisationTS: Conceptualisation, Methodology, Writing—Review & Editing, Supervision, Project administrationZW: Resources, Conceptualisation, Methodology, Writing—Review & Editing, Supervision, Funding acquisition.HT: Resources, Methodology, Writing—Review & Editing, Supervision.

Corresponding authors

Correspondence to Tingting Su, Zhanyong Wang or Haibin Tong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Ma, Q., Su, T. et al. Effect of Polycaprolactone Microplastics on Soil Microbial Communities and Plant Growth. J Polym Environ 32, 1039–1045 (2024). https://doi.org/10.1007/s10924-023-03028-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03028-0

Keywords

Navigation