Skip to main content

Advertisement

Log in

Biodegradable plastic agricultural mulches and key features of microbial degradation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The development of biodegradable plastic mulch films for use in agriculture has been ongoing for decades. These films consist of mixtures of polymers with various additives. As a result, their physical and chemical properties differ from those of the pure polymers often used for in vitro enzymatic and microbial degradation studies, raising questions about the biodegradation capability of mulch films. Currently, standards exist for the biodegradation of plastics in composting conditions but not in soil. Biodegradation in soil or compost depends on a complex synergy of biological and abiotic degradative processes. This review discusses the physicochemical and structural properties of biodegradable plastic mulches, examines their potential for on-site decomposition in light of site-to-site variance due to environmental and biological conditions, and considers the potential for long-term effects on agroecosystem sustainability and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe M, Kobayashi K, Honma N, Nakasaki K (2010) Microbial degradation of poly(butylene succinate) by Fusarium solani in soil environments. Polym Degrad Stab 95:138–143

    CAS  Google Scholar 

  • Accinelli C, Saccà ML, Abbas HK, Zablotowicz RM, Wilkinson JR (2009) Use of a granular bioplastic formulation for carrying conidia of a non-aflatoxigenic strain of Aspergillus flavus. Bioresour Technol 100:3997–4004

    CAS  PubMed  Google Scholar 

  • Accinelli C, Mencarelli M, Saccà ML, Vicari A, Abbas HK (2012) Managing and monitoring of Aspergillus flavus in corn using bioplastic-based formulations. Crop Prot 32:30–35

    Google Scholar 

  • Ahmad R, Jilani G, Arshad M, Zahir ZA, Khalid A (2007) Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Ann Microbiol 57:471–479

    Google Scholar 

  • Albertsson A-C, Ranby B (1979) Biodegradation of synthetic polymers. IV. The 14CO2 method applied to a linear polyethylene containing a biodegradable additive. J Appl Polym Sci Appl Polym Symp 35:423

    CAS  Google Scholar 

  • Albregts EE, Howard CM (1972) Effect of mulches on okra, pepper, and strawberries in central Florida. Dover Research Report SV-1972-2. Agri Res Cent, IFSS, University of Florida, Dover, FL

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. John Wiley and Sons, Inc, New York, p 308

    Google Scholar 

  • Amidon Recycling (1994) Use and disposal of plastics in agriculture. American Plastics Council, Washington

    Google Scholar 

  • Arias V, Höglund A, Odelius K, Albertsson AC (2014) Tuning the degradation profiles of poly(l-lactide)-based materials through miscibility. Biomacromol 15:391–402

    CAS  Google Scholar 

  • ASTM D 5338-98 (1998) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions. American Society for Testing and Materials International, West Conshohocken, PA. http://www.astm.org/Standards/D6400.htm

  • ASTM D 6400-12 (2012) Standard specification for compostable plastics. American Society for Testing and Materials International, West Conshohocken, PA. http://www.astm.org/Standards/D6400.htm

  • ASTM WK29802 (2014) Standard specification for virgin plastics that biodegrade in soil under aerobic laboratory conditions. American Society for Testing and Materials International, West Conshohocken, PA. http://www.astm.org/WorkItems/WK29802.htm

  • Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci-Pol R 44:231–274

    Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. WP Van Stockum and Zoon, The Hague, the Netherlands

  • Babu BP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8

    Google Scholar 

  • Bergenholtz KP, Nielsen PV (2002) New improved method for evaluation of growth by food related fungi on biologically derived materials. J Food Sci 67:2745–2749

    CAS  Google Scholar 

  • Bhardwaj H, Gupta R, Tiwari A (2012) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ 21:575–579

    Google Scholar 

  • Bonhomme S, Cuer A, Delort A-M, Lemaire J, Sancelme M, Scott G (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81:441–452

    CAS  Google Scholar 

  • Boyandin AN, Rudnev VP, Ivonin VN, Prudnikova SV, Korobikhina KI, Filipenko ML, Volova TG, Sinskey AJ (2012) Biodegradation of polyhydroxyalkanoate films in natural environments. Macromol Symp 320:38–42

    CAS  Google Scholar 

  • Briassoulis D (2004) An overview on the mechanical behaviour of biodegradable agricultural films. J Polym Environ 12:65–81

    CAS  Google Scholar 

  • Brown NA, Ries LNA, Goldman GH (2014) How nutritional status signaling coordinates metabolism and lignocellulolytic enzyme secretion. Fung Genet Biol. doi:10.1016/j.fgb.2014.06.012

    Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    CAS  Google Scholar 

  • Caballero Ortiz SC, Trienens M, Rohlfs M (2013) Induced fungal resistance to insect grazing: reciprocal fitness consequences and fungal gene expression in the DrosophilaAspergillus model system. PLoS One 8(8):e74951. doi:10.1371/journal.pone.0074951

    PubMed Central  PubMed  Google Scholar 

  • Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    CAS  Google Scholar 

  • Chen Y, Tan L, Chen L, Yang Y, Wang X (2008) Study on biodegradable aromatic/aliphatic copolyesters. Braz J Chem Engr 25:321–335

    CAS  Google Scholar 

  • Chiellini E, Corti A, D’Antone S, Wiles DM (2011) Oxo-biodegradable polymers: present status and future perspectives. In: Lendlein A, Sisson A (eds) Handbook of biodegradable polymers: synthesis, characterization and applications. Wiley-VCH Verlag GmbH & Co, Weinheim

    Google Scholar 

  • Clerici MTPS (2012) Physical and/or chemical modifications of starch by thermoplastic extrusion. In: El-Sonbati A (ed) Thermoplastic elastomers. ISBN: 978-953-51-0346-2, InTech. doi: 10.5772/34318

  • Cook WJ, Cameron JA, Bell JP, Huang SJ (1981) Scanning electron microscopic visualization of biodegradation of polycaprolactones by fungi. J Polym Sci B 19:159–165

    Google Scholar 

  • Corbin A, Cowan J, Miles C, Hayes D, Dorgan J, Inglis D (2013) Using biodegradable plastics as agricultural mulches. Washington State University Extension Fact Sheet FS103E, Washington State University, Pullman, WA

  • Da Roz AL, Zambon MD, Curvelo AAS, Carvalho AJF (2011) Thermoplastic starch modified during melt processing with organic acids: the effect of molar mass on thermal and mechanical properties. Ind Crop Prod 33:152–157

    Google Scholar 

  • Davidson EZ, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    CAS  PubMed  Google Scholar 

  • Desjardins AE (2006) Fusarium mycotoxins: chemistry, genetics, and biology. APS Press, St. Paul

    Google Scholar 

  • Divya G, Archana T, Manzano RA (2013) Polyhydroxy alkanoates—a sustainable alternative to petro-based plastics. J Pet Environ Biotechnol 4:1–8

    Google Scholar 

  • Döll K, Chatterjee S, Scheu S, Karlovsky P, Rohlfs M (2013) Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod fungivory. Proc R Soc B 280:20131219. doi:10.1098/rspb.2013.1219

    PubMed Central  PubMed  Google Scholar 

  • Domb AJ, Kost J, Wiseman D (1998) Handbook of biodegradable polymers. CRC Press, New York, pp 452–453

    Google Scholar 

  • El-Shafei H, El-Nasser NHA, Kansoh AL, Ali AM (1998) Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polym Degrad Stab 62:361–365

    CAS  Google Scholar 

  • Emmert EM (1955) Low-cost plastic greenhouses. Kentucky Agr Expt Sta Progress Report 28

  • Emmert EM (1957) Black polyethylene for mulching vegetables. Proc Amer Soc Hort Sci 69:464–469

    Google Scholar 

  • Espí E, Salmeron A, Fontecha A, Garcia Y, Real AI (2006) Plastic films for agricultural applications. J Plast Film Sheet 22:85–102

    Google Scholar 

  • Eubeler JP, Bernhard M, Zok S, Knepper TP (2009a) Environmental biodegradation of synthetic polymers I. Test methodologies and procedures. Trends Anal Chem 28:1057–1072

    CAS  Google Scholar 

  • Eubeler JP, Bernhard M, Zok S, Knepper TP (2009b) Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. Trends Anal Chem 29:84–100

    Google Scholar 

  • Faison BD, Kirk TK (1985) Factors involved in the regulation of a ligninase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 49:299–304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrarezi MMF, de Oliveira TM, da Silva LCE, do Carmo Goncalves M (2013) Poly(ethylene glycol) as a compatibilizer for poly(lactic acid)/thermoplastic starch blends. J Polym Environ 21:151–159

    CAS  Google Scholar 

  • Fontanille P, Kumar V, Christophe G, Nouaille R, Larroche C (2012) Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol 114:443–449

    CAS  PubMed  Google Scholar 

  • Galinato SP, Walters TW (2012) Cost estimates of producing strawberries in a high tunnel in western Washington. Washington State University Extension Publication FS093E, Washington State University, Pullman, WA

  • Galinato SP, Miles C, Ponnaluru SS (2012) Cost estimates of producing fresh market field-grown tomato in western Washington. Washington State University Extension Publication FS080E, Washington State University, Pullman, WA

  • Garthe JW, Kowal PD (1993) Resource recovery: turning waste into energy. Penn State University Fact Sheet C-11. http://extension.psu.edu/natural-resources/energy/waste-to-energy/fact-sheets/c-11

  • Gattin R, Copinet A, Bertrand C, Couturier Y (2001) Comparative biodegradation study of starch- and polylactic acid-based materials. J Polym Environ 9:11–17

    CAS  Google Scholar 

  • Gaylor MO, Harvey E, Hale RC (2012) House crickets can accumulate polybrominateddiphenyl ethers (PBDEs) directly from polyurethane foam common in consumer products. Chemosphere 86:500–505

    CAS  PubMed  Google Scholar 

  • Ghosh SK, Pal S, Ray S (2013) Study of microbes having potentiality for biodegradation of plastics. Environ Sci Pollut Res 20:4339–4355

    CAS  Google Scholar 

  • Gilmore DF, Antoun S, Lenz RW, Goodwin S, Austin R, Fuller RC (1992) The fate of ‘biodegradable’ plastics in municipal leaf compost. J Ind Microbiol 10:199–206

    CAS  Google Scholar 

  • Gross RA, Gu JD, Eberiel D, McCarthy SP (1995) Laboratory scale composting test methods to determine polymer biodegradability: model studies on cellulose acetate. J Macromol Sci Pure Appl Chem A32:613–628

    CAS  Google Scholar 

  • Haddad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100

    Google Scholar 

  • Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Oxfordshire

    Google Scholar 

  • Hartman RE, Keen NT (1973) Enzymes catalyzing anaplerotic carbon dioxide fixation in Verticillium albo-atrum. Phytopathology 63:947–953

    CAS  Google Scholar 

  • Hartman RE, Keen NT (1974) The phosphoenolpyruvate carboxykinase of Verticillium albo-atrum. J Gen Microbiol 81:21–26

    Google Scholar 

  • Hartman RE, Keen NT, Long M (1972) Carbon dioxide fixation by Verticillium albo-atrum. J Gen Microbiol 73:29–34

    CAS  Google Scholar 

  • Hayes DG, Dharmalingam S, Wadsworth LC, Leonas KK, Miles C, Inglis DA (2012) Biodegradable agricultural mulches derived from biopolymers. In: Khemani KC, Scholz C (eds) Degradable polymers and materials, principles and practice, 2nd ed. ACS Symposium Series, Volume 1114, American Chemical Society Washington, DC

  • Hill DE, Hankin L, Stephens GR (1982) Mulches: their effects on fruit set, timing and yields of vegetables. Agricultural Experiment Station Bulletin 805, New Haven, CT

  • Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C, Gray H, Laursen D, Zettler ER, Farrington JW, Reddy CM, Peacock EE, Ward MW (2011) Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62:1683–1692

    CAS  PubMed  Google Scholar 

  • Hiraishi A, Khan ST (2003) Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61:103–109

    CAS  PubMed  Google Scholar 

  • Hirsch P (1986) Microbial life at extremely low nutrient levels. Adv Space Res 6:287–298

    CAS  PubMed  Google Scholar 

  • Imam SH, Gordon SH, Shogren RL, Tosteson TR, Govind NS, Greene RV (1999) Degradation of starch-poly(β-hydroxybutyrate-co-β-hydroxyvalerate) bioplastic in tropical coastal waters. Appl Environ Microbiol 65:431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imre B, Puklasnszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233

    CAS  Google Scholar 

  • ISO 14855–1 (2012) Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—method by analysis of evolved carbon dioxide—part 1: general method. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO 17088 (2012) Specifications for compostable plastics. International Organization for Standardization, Geneva

    Google Scholar 

  • Isobaev P, Bouferguene A, Wichuk KM, McCartney D (2014) An enhanced compost temperature sampling framework: case study of a covered aerated static pile. Waste Manage 34:1117–1124

    Google Scholar 

  • Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycologia 175:369–379

    Google Scholar 

  • Jandas PJ, Mohanty S, Nayak SK (2013) Sustainability, compostability, and specific microbial activity on agricultural mulch films prepared from poly(lactic acid). Ind Eng Chem Res 52:17714–17724

    CAS  Google Scholar 

  • Jarerat A, Tokiwa Y, Tanaka H (2004) Microbial poly(l-lactide)-degrading enzyme induced by amino acids, peptides, and poly(l-amino acids). J Polym Environ 12:139–146

    CAS  Google Scholar 

  • Jarerat A, Tokiwa Y, Tanaka H (2006) Production of poly(l-lactide)-degrading enzyme by Amycolatopsis orientalis for biological recycling of poly(l-lactide). Appl Microbiol Biotechnol 72:726–731

    CAS  PubMed  Google Scholar 

  • Jendrossek D (2001) Microbial degradation of polyesters. Adv Biochem Engin Biotechnol 71:293–325

    CAS  Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

    CAS  PubMed  Google Scholar 

  • Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acid. Appl Microbiol Biotechnol 46:451–463

    CAS  PubMed  Google Scholar 

  • Johnston G (2012) Evaluation of biodegradable plastic mulches for watermelon production in Delaware. University of Delaware Carvel Research Education Center. http://extension.udel.edu/ag/files/2012/03/2012DegradableMulchWM.pdf

  • Jung JH, Ree M, Kim H (2006) Acid- and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters. Catal Today 115:283–287

    CAS  Google Scholar 

  • Karamanlioglu M, Robson GD (2013) The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym Degrad Stab 98:2063–2071

    CAS  Google Scholar 

  • Karpušenkaitė A, Varžinskas V (2014) Bioplastics: development, possibilities and difficulties. Environ Res Engin Manag 68:69–78

    Google Scholar 

  • Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32:501–529

    CAS  Google Scholar 

  • Kasuya K, Ishii N, Inoue Y, Yazawa K, Tagaya T, Yotsumoto T, Kazahaya J, Nagai D (2009) Characterization of a mesophilic aliphatic–aromatic copolyester degrading fungus. Polym Degrad Stab 94:1190–1196

    CAS  Google Scholar 

  • Katz ME, Kelly JM (2010) Glucose. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Washington DC

    Google Scholar 

  • Kawai F (1995) Breakdown of plastics and polymers by microorganisms. Adv Biochem Eng Biot 52:151–194

    CAS  Google Scholar 

  • Kawai F (2010) Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases. In: Cheng H, Gross RA (eds) Green polymer chemistry: biocatalysis and biomaterials, ACS Symposium Series, American Chemical Society, Washington, DC

  • Kerem Z, Bao W, Hammel KE (1998) Rapid polyether cleavage via extracellular one-electron oxidation by a brown-rot basidiomycete. Proc Natl Acad Sci U S A 95:10373–10377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kersh K (2012) Bridging the divide between demands and bio-based materials. Lux Research Inc. Report 11743. https://portal.luxresearchinc.com/research/report_excerpt/11743

  • Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish-peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khiyami MA, Pometto AL III, Kennedy WJ (2006) Ligninolytic enzyme production by Phanerochaete chrysosporium in plastic composite support biofilm stirred tank bioreactors. J Agric Food Chem 54:1693–1698

    CAS  PubMed  Google Scholar 

  • Kijchavengkul T, Auras R (2008) Compostability of polymers. Polym Int 57:793–804

    CAS  Google Scholar 

  • Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyesters. Polym Degr Stab 95:2641–2647

    CAS  Google Scholar 

  • Kim DY, Rhee YH (2003) Biodegradation of microbial and synthetic polyesters by fungi. Appl Microbiol Biotechnol 61:300–308

    CAS  PubMed  Google Scholar 

  • Kim MN, Lee AR, Yoon JS, Chin IJ (2000) Biodegradation of poly(3-hydroxybutyrate), Sky-Green®, and Mater-Bi® by fungi isolated from soils. Eur Polym J 36:1677–1685

    CAS  Google Scholar 

  • Kim DY, Kim HW, Chung MG, Rhee YH (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45:87–97

    PubMed  Google Scholar 

  • Kitamoto HK, Shinozaki Y, Cao X, Morita T, Konishi M, Tago K, Kajiwara H, Koitabashi M, Yoshida S, Watanabe T, Sameshima-Yamashita Y, Nakajima-Kambe T, Tsushima S (2011) Phyllosphere yeasts rapidly break down biodegradable plastics. Appl Microbiol Biotechnol Express 1:44. http://www.amb-express.com/content/1/1/44

  • Koitabashi M, Noguchi MT, Sameshima-Yamashita Y, Hiradate S, Suzuki K, Yoshida S, Watanabe T, Sinozaki Y, Tshushima S, Kitamoto HK (2012) Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants. Appl Microbiol Biotechnol Express 2:40. http://www.amb-express.com/content/2/1/40

  • Kolattukudy PE (1981) Structure, biosynthesis, and biodegradation of cutin and suberin. Ann Rev Plant Physiol 32:39–67

    Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Eng Biot 71:1–49

    CAS  Google Scholar 

  • Kubicek CP, Seidl V, Seiboth B (2010) Plant cell wall and chitin degradation. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Washington DC

    Google Scholar 

  • Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150

    CAS  Google Scholar 

  • Laird K (2013) Freedonia Group forecasts explosive surge in worldwide bioplastic demand. http://www.plasticstoday.com/articles/freedonia-group-forecasts-explosive-surge-world-bioplastic-demand

  • Lamont WJ (2005) Plastics: modifying the microclimate for the production of vegetable crops. HortTechnology 15:477–481

    Google Scholar 

  • Lee B, Pometto AL III, Fratzke A, Bailey TB Jr (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. Polish J Environ Stud 19:255–266

    Google Scholar 

  • Lemieux PM (1997) Evaluation of emissions from the open burning of household waste in barrels. US Environmental Protection Agency Report 600/R-97-134a, Washington, DC

  • Levitan L (2005) Reducing dioxin emissions by recycling agricultural plastics: creating a viable alternative to open burning. In: Great Lakes Regional Pollution Prevention Roundtable, New York Academy of Sciences, New York, NY

  • Li C, Moore-Kucera J, Miles C, Leonas K, Lee J, Corbin A, Inglis D (2014) Degradation of potentially biodegradable plastic mulch films at three diverse U.S. locations. Agroecol Sustain Food Sys 38(7):861–889. doi:10.1080/21683565.2014.884515

    Google Scholar 

  • Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava Saucedo J-E (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442

    CAS  PubMed  Google Scholar 

  • Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778–788

    CAS  PubMed  Google Scholar 

  • Magnuson JK, Lasure, LL (2004) Organic acid production by filamentous fungi. In: Lange J and Lange L(eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Kluwer Academic/Plenum Publishers, Dordrecht, The Netherlands

  • Mark JE (1999) Polymer data handbook. Oxford University Press, Oxford

    Google Scholar 

  • Martin-Closas L, Pelacho AM (2011) Agronomic potential of biopolymer films. Biopolymers—new materials for Sustainable films and coatings, D. Plackett (ed) 1st edn, John Wiley and Sons, Chichester, UK

  • Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol 71:7548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324

    CAS  PubMed  Google Scholar 

  • Mayumi D, Akutsu-Shigeno Y, Uchiyama H, Nomura N, Nakajima-Kambe T (2008) Identification and characterization of novel poly(dl-lactic acid) depolymerases from metagenome. Appl Microbiol Biotechnol 79:743–750

    CAS  PubMed  Google Scholar 

  • Mellon JE, Cotty PJ, Dowd MK (2007) Aspergillus flavus hydrolases: their roles in pathogenesis and substrate utilization. Appl Microbiol Biotechnol 77:497–504

    CAS  PubMed  Google Scholar 

  • Miles C, Wallace R, Wszelaki A, Martin J, Cowan J, Walters T, Inglis DA (2012) Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. HortSci 47:1270–1277

    Google Scholar 

  • Miller SA (2013) Sustainable polymers: opportunities for the next decade. ACS Macro Lett 2:550–554

    CAS  Google Scholar 

  • Mogil’nitskii GM, Sagatelyan RT, Kutishcheva TN, Zhukova SV, Kerimov SI, Parfenova TB (1987) Disruption of the protective properties of the polyvinyl chloride coating under the effect of microorganisms. Prot Met 23:173–175

    Google Scholar 

  • Mohan SK, Srivastava T (2010) Microbial deterioriation and degradation of polymeric materials. J Biochem Tech 2:210–215

    CAS  Google Scholar 

  • Moore-Kucera J, Cox SB, Peyron M, Bailes G, Kinloch K, Karich K, Miles C, Inglis DA, Brodhagen M (2014) Native soil fungi associated with compostable plastics in three contrasting agricultural settings. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5711-x

    PubMed  Google Scholar 

  • Müller R-J, Kleeberg I, Deckwer W-D (2001) Biodegradation of polyesters containing aromatic constituents. J Biotech 86:87–95

    Google Scholar 

  • Müller C, Townsend K, Matschullat J (2012) Experimental degradation of polymer shopping bags (standard and degradable, and biodegradable) in the gastrointestinal fluids of sea turtles. Sci Total Environ 416:464–467

    PubMed  Google Scholar 

  • Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62:456–460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura K, Tomita T, Abe N, Kamio Y (2001) Purification and characterization of an extracellular poly(l-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Appl Environ Microbiol 67:345–353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishida H, Tokiwa Y (1994) Degradation of poly(2-oxepanone) by phytopathogens. Chem Lett 23:1547–1550

    Google Scholar 

  • Ojeda TFM, Dalmolin E, Forte MMC, Jacques RJS, Bento FM, Camargo FAO (2009) Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polym Degrad Stab 94:965–970

    CAS  Google Scholar 

  • Olsen JK, Gounder RK (2001) Alternatives to polyethylene mulch film—a field assessment of transported materials in capsicum (Capsicum annuum L.). Aust J Exp Agr 41:93–103

    Google Scholar 

  • Otey FH, Mark AM, Mehltretter CL, Russell CR (1974) Starch-based film for degradable agricultural mulch. Chem Prod Res Dev 13:90–92

    CAS  Google Scholar 

  • Parkinson SM, Wainwright M, Killham K (1989) Observation on oligotrophic growth of fungi on silica gel. Mycol Res 93:529–534

    Google Scholar 

  • Pascall MA, Zabik ME, Zabik MJ, Hernandez RJ (2005) Uptake of polychlorinated biphenyls (PCBs) from an aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films. J Agric Food Chem 53:164–169

    CAS  PubMed  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    CAS  Google Scholar 

  • Plastics Europe, European Plastics Converters, European Plastics Recyclers, European Association of Plastics Recycling and Recovery Organisations (2012) Plastics—the facts 2012. An analysis of European plastics production, demand and waste data for 2011. http://www.plasticseurope.org/documents/document/20121120170458-final_plasticsthefacts_nov2012_en_web_resolution.pdf

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 5:236–246

    Google Scholar 

  • Pranamuda H, Tokiwa Y (1999) Degradation of poly(l-lactide) by strains belonging to genus Amycolatopsis. Biotechnol Lett 21:901–905

    CAS  Google Scholar 

  • Pranamuda H, Tsuchii A, Tokiwa Y (2001) Poly(l-lactide) degrading enzyme produced by Amycolatopsis sp. Macromol Biosci 1:25–29

    CAS  Google Scholar 

  • Prenafet-Boldú FX, Summerbell R, de Hoog GS (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130

    Google Scholar 

  • Queiroz AUB, Collares-Queiroz FP (2009) Innovation and industrial trends in bioplastics. Polym Rev 49:65–78

    CAS  Google Scholar 

  • Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    CAS  PubMed  Google Scholar 

  • Reddy MM, Deighton M, Gupta RK, Bhattacharya SN, Parthasarathy R (2008) Biodegradation of oxo-biodegradable polyethylene. J Appl Polym Sci 111:1426–1432

    Google Scholar 

  • Riggi E, Santagata G, Malinconico M (2011) Bio-based and biodegradable plastics for use in crop production. Recent Pat Food Nutr Agr 3:49–63

    CAS  Google Scholar 

  • Rios LM, Moore C, Jones PR (2007) Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull 54:1230–1237. doi:10.1016/j.marpolbul.2007.03.022

    CAS  PubMed  Google Scholar 

  • Rios LM, Jones PR, Moore C, Narayan UV (2010) Quantitation of persistent organic pollutants adsorbed on plastic debris from the Northern Pacific Gyre’s “eastern garbage patch”. J Environ Monitor 12:2226–2236

    CAS  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    CAS  PubMed  Google Scholar 

  • Rohlfs M, Albert M, Keller NP, Kempken F (2007) Secondary chemicals protect mould from fungivory. Biol Lett 3:523–525

    PubMed Central  PubMed  Google Scholar 

  • Rudnik E (2008) Compostable polymer materials. Elsevier, Oxford

    Google Scholar 

  • Ryan PG, Connell AD, Gardner BD (1988) Plastic ingestion and PCBs in seabirds: is there a relationship? Mar Pollut Bull 19:174–176

    CAS  Google Scholar 

  • Saadi Z, Cesar G, Bewa H (2013) Fungal degradation of poly(butylene adipate-co-terephthalate) in soil, and in compost. J Polym Environ 21:893–901

    CAS  Google Scholar 

  • Sang BI, Hori K, Tanji Y, Unno H (2002) Fungal contribution to in situ biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) film in soil. Appl Microbiol Biotechnol 58:241–247

    CAS  PubMed  Google Scholar 

  • Schmale III DG, Munkvold GP (2014) Mycotoxins in crops: a threat to human and domestic animal health. APSnet Education Center. http://www.apsnet.org/edcenter/intropp/topics/Mycotoxins/Pages/default.aspx. Accessed 23 November 2014

  • Schuman GL, D’Arcy CJ (2006) Essential plant pathology. APS Press, St. Paul, pp 250–251

    Google Scholar 

  • Scoppa P, Marafante E (1971) Uptake of aflatoxin B1 by plastic materials. Experientia 27:414–415

    CAS  PubMed  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    CAS  PubMed  Google Scholar 

  • Shanks R, Kong I (2012) Thermoplastic starch. In: El-Sonbati A (ed) Thermoplastic elastomers. ISBN: 978-953-51-0346-2. InTech, doi: 10.5772/36295

  • Sharom MS, Solomon KR (1981) Adsorption and desorption of permethrin and other pesticides on glass and plastic materials used in bioassay procedures. Can J Fish Aquat Sci 38:199–204

    CAS  Google Scholar 

  • Shin BY, Narayan R, Lee SI, Lee TJ (2008) Morphology and rheological properties of blends of chemically modified thermoplastic starch and polycaprolactone. Polym Eng Sci 48:2126–2133

    CAS  Google Scholar 

  • Shogren RL (2000) Biodegradable mulches from renewable resources. J Sust Agr 16:33–47

    Google Scholar 

  • Sin LS, Rahmat AR, Rahman WAWA (2012) Polylactic acid: PLA biopolymer technology and applications. Elsevier, Oxford. doi:10.1016/B978-1-4377-4459-0.00010-X

    Google Scholar 

  • Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584

    CAS  Google Scholar 

  • Sun NY (2014) Kingfa sees major boost of PBSA film usage. Plastics news, June 5, 2014. http://www.plasticsnews.com/article/20140605/NEWS/140609928/kingfa-sees-major-boost-of-pbsa-film-usage

  • Suresh Kumar SV, Phale PS, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394

    Google Scholar 

  • Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swift G (1993) Directions for environmentally biodegradable polymer research. Acc Chem Res 26:105–110

    CAS  Google Scholar 

  • Takahashi M, Yamada T, Tanno M, Tsuji H, Hiraishi A (2011) Nitrate removal efficiency and bacterial community dynamics in denitrification processes using poly (l-lactic acid) as the solid substrate. Microbes Environ 26:212–219

    PubMed  Google Scholar 

  • ten Have R, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413

    PubMed  Google Scholar 

  • Teuten EL, Saquing JM, Knappe DR, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos T Roy Soc B 364:2027–2045. doi:10.1098/rstb.2008.0284

    CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    CAS  Google Scholar 

  • Tokiwa Y, Calabia B (2004) Degradation of microbial polyesters. Biotechnol Lett 26:1181–1189

    CAS  PubMed  Google Scholar 

  • Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251

    CAS  PubMed  Google Scholar 

  • Tokiwa Y, Jarerat A (2003) Microbial degradation of aliphatic polyesters. Macromol Symp 201:283–289

    CAS  Google Scholar 

  • Tokiwa Y, Suzuki T (1974) Degradation of poly(ethylene glycol) adipate by a fungus. J Ferm Technol 52:393–398

    CAS  Google Scholar 

  • Tokiwa Y, Suzuki T (1977a) Purification of polyethylene adipate degrading enzyme produced by Penicillium sp. strain 14–3. Agric Biol Chem 41:265–274

    CAS  Google Scholar 

  • Tokiwa Y, Suzuki T (1977b) Hydrolysis of polyesters by lipases. Nature 270:76–78

    CAS  PubMed  Google Scholar 

  • Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Topp E, Smith W (1992) Sorption of the herbicides atrazine and metolachlor to selected plastics and silicone rubber. J Environ Qual 21:316–317

    CAS  Google Scholar 

  • Torres A, Li SM, Roussos S, Vert M (1996) Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers. Appl Environ Microbiol 62:2392–2397

    Google Scholar 

  • Trautman N (1996) Compost physics. Cornell composting science and engineering. http://compost.css.cornell.edu/physics.html. Accessed 23 November 2014

  • Trienens M, Rohlfs M (2011) Experimental evolution of defense against a competitive mold confers reduced sensitivity to fungal toxins but no increased resistance in Drosophila larvae. BMC Evol Biol 11:206. http://www.biomedcentral.com/1471-2148/11/206

  • Tsao R, Anderson TA, Coats JR (1993) The influence of soil macroinvertebrates on primary biodegradation of starch-containing polyethylene films. J Environ Poly Degrad 1:301–306

    CAS  Google Scholar 

  • Vikman M, Itavaara M, Poutanen K (1995) Measurement of the biodegradation of starch-based materials by enzymatic methods and composting. J Environ Polym Degrad 3:23–29

    CAS  Google Scholar 

  • Vikman M, Hulleman SHD, Van Der Zee M, Myllärinen P, Feil H (1999) Morphology and enzymatic degradation of thermoplastic starch-polycarpolactone blends. J Appl Polym 74:2594–2604

    CAS  Google Scholar 

  • Wainwright M, Barakah F, Al-Turk I, Ali TA (1991) Oligotrophic micro-organisms in industry, medicine, and the environment. Sci Prog Edinburgh 75:313–322

    CAS  Google Scholar 

  • Wainwright M, Ali TA, Barakah F (1993) A review of the role of oligotrophic micro-organisms in biodeterioration. Int Biodeterior Biodegrad 31:1–13

    Google Scholar 

  • Wang XL, Yang KK, Wang YZ (2003) Properties of starch blends with biodegradable polymers. J Macromol Sci Pol R 43:385–409

    CAS  Google Scholar 

  • Watanabe T, Shinozaki Y, Yoshida S, Koitabashi M, Sameshima-Yamashita Y, Fujii T, Fukuoka T, Kitamoto HK (2014) Xylose induces the phyllosphere yeast Pseudozyma antarctica to produce a cutinase-like enzyme which efficiently degrades biodegradable plastics. J Biosci Bioeng 117:325–329

    CAS  PubMed  Google Scholar 

  • Weng YX, Wang L, Zhang M, Wang XL, Wang YZ (2013) Biodegradation behavior of P(3HB, 4HB)/PLA blends in real soil environments. Polym Test 32:60–70

    CAS  Google Scholar 

  • Whitney PJ, Swaffield CH, Graffham AJ (1993) The environmental degradation of thin plastic films. Int Biodeterior Biodegrad 31:179–198

    CAS  Google Scholar 

  • Wiles DM, Scott G (2006) Polyolefins with controlled environmental degradability. Polym Degrad Stab 91:1581–1592

    CAS  Google Scholar 

  • Wood CT, Zimmer M (2014) Can terrestrial isopods (Isopoda: Oniscidea) make use of biodegradable plastics? Appl Soil Ecol 77:72–29

  • Woolnough CA, Yee LH, Charlton T, Foster LJR (2010) Environmental degradation and biofouling of ‘green’ plastics including short and medium chain length polyhydroxyalkanoates. Polym Int 59:658–667

    CAS  Google Scholar 

  • Wu CS (2008) Characterizing biodegradation of PLA and PLA-g-AA/starch films using a phosphate-solubilizing Bacillus species. Macromol Biosci 8:560–567

    CAS  PubMed  Google Scholar 

  • Yabannavar AV, Bartha R (1994) Methods for assessment of biodegradability of plastic films in soil. Appl Environ Microbiol 60:3608–3614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327

    CAS  Google Scholar 

  • Yamashita R, Takada H, Fukuwaka M, Watanuki Y (2011) Physical and chemical effects of ingested plastic debris on short-tailed shearwaters, Puffinus tenuirostris, in the North Pacific Ocean. Mar Pollut Bull 62:2845–2849

    CAS  PubMed  Google Scholar 

  • Yoshida N, Ye L, Liu F, Li Z, Katayama A (2013) Evaluation of biodegradable plastics as solid hydrogen donors for the reductive dechlorination of fthalide by Dehalobacter species. Bioresour Technol 130:478–485

    CAS  PubMed  Google Scholar 

  • Yu J, Payne GA, Campbell BC, Guo B, Cleveland TE, Robens JF, Keller NP, Bennett JW, Nierman WC, Steinbach WJ (2008) Mycotoxin production and prevention of aflatoxin contamination in food and feed. In: Goldman GH, Osmani SA (eds) The Aspergilli: genomics, medical aspects, biotechnology, and research methods. CRC Press, Taylor and Francis Group, Boca Raton

  • Zarfl C, Matthies M (2010) Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar Pollut Bull 60:1803–1809

    Google Scholar 

  • Zeng RS, Niu G, Wen Z, Schuler MA, Berenbaum MR (2006) Toxicity of aflatoxin B1 to Helicoverpazea and bioactivation by cytochrome P450 monooxygenases. J Chem Ecol 32:1459–1471

    CAS  PubMed  Google Scholar 

  • Zeng RS, Wen Z, Niu G, Berenbaum MR (2013) Aflatoxin B1: toxicity, bioactivation and detoxification in the polyphagous caterpillar Trichoplusiani. Insect Sci 20:318–328

    CAS  PubMed  Google Scholar 

  • Zhang Y, Rempel C, Liu Q (2014) Thermoplastic starch processing and characteristics—a review. Crit Rev Food Sci Nutr 54:1353–1370

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review resulted from work funded by a grant from the United States Department of Agriculture, National Institute of Food and Agriculture, Specialty Crops Research Initiative, Standard Research and Extension Project Grant Award No. 2009-02484.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Brodhagen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodhagen, M., Peyron, M., Miles, C. et al. Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl Microbiol Biotechnol 99, 1039–1056 (2015). https://doi.org/10.1007/s00253-014-6267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6267-5

Keywords

Navigation