Skip to main content
Log in

Removal of Cu(II) and Cd(II) Ions from Aqueous Solutions by Methionine Functionalized Cobalt-Magnesium Ferrite Chitosan Beads: Performance and Adsorption Mechanism

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Heavy metal ions are an extremely toxic and non-biodegradable wastewater pollutant that pose a major risk to both natural systems and human health. Adsorptive removal of metal ions is a proven technique for such waste water treatment. So fabricating efficient adsorbent material for the removal of toxic metal ions from the water is a key step. Contributing to this, here we report the synthesis of Methionine functionalized cobalt-magnesium ferrite chitosan bead, i.e., CMF@MF-CB adsorbent. CMF@MF-CB was prepared by entrapped methionine functionalized nanoparticles into chitosan beads. The structure, morphology and magnetic properties of synthesized adsorbents were investigated by XRD, FTIR, FESEM and EDS, BET, TGA and VSM techniques. The adsorption behavior of CMF@MF-CB was studied for Cu(II) and Cd(II) ions removal from solutions. Kinetic parameters, adsorption isotherms and thermodynamic studies were evaluated. The adsorption of Cu(II) and Cd(II) ions onto CMF@MF-CB was noted to follow pseudo second order kinetics (R2 = 0.9908 for Cu(II) and 0.9902 for Cd(II)). The maximum adsorption capacities for Cu (II) and Cd (II) ions were calculated as 212.77 and 175.44 mg.g−1 from Langmuir isotherm model. The adsorption process was endothermic and spontaneous, according to the positive ΔH0 (10.9 Cu(II) and Cd(II) 6.8 kJ.mol−1) and negative values of ΔG0. The CMF@MF-CB adsorbent was easily separable by external magnet and effectively recovered after adsorption completion. The admirable adsorption performance of CMF@MF-CB adsorbent for Cu(II) and Cd(II) ions with cost effectiveness make it noteworthy to reduce the water contamination issue.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799. https://doi.org/10.1016/j.jece.2017.05.029

    Article  CAS  Google Scholar 

  2. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. Chem Bio Eng Reviews 4:37–59. https://doi.org/10.1002/cben.201600010

    Article  Google Scholar 

  3. Obasi PN, Akudinobi BEB (2019) Heavy metals occurrence, assessment and distribution in water resources of the lead–zinc mining areas of Abakaliki, Southeastern Nigeria. Int J Environ Sci Technol 16:8617–8638. https://doi.org/10.1007/s13762-019-02489-y

    Article  CAS  Google Scholar 

  4. Suhani I, Sahab S, Srivastava V, Singh RP (2021) Impact of cadmium pollution on food safety and human health. Curr Opin Toxicol 27:1–7. https://doi.org/10.1016/j.cotox.2021.04.004

    Article  CAS  Google Scholar 

  5. Manne R, Kumaradoss MMRM, Iska RSR, Devarajan A, Mekala N (2022) Water quality and risk assessment of copper content in drinking water stored in copper container. Appl Water Sci 12:27. https://doi.org/10.1007/s13201-021-01542-x

    Article  CAS  Google Scholar 

  6. Zamora LC, Negrete BD, Figueroa F, Zamora LE, Ni M, Alexis F, Guerrero VH (2021) Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ Technol Innov 22:101504. https://doi.org/10.1016/j.eti.2021.101504

    Article  CAS  Google Scholar 

  7. Chaemiso TD, Nefo T (2019) Removal methods of heavy metals from laboratory wastewater. J Nat Sci Res 9:36–42. https://doi.org/10.7176/JNSR/9-2-04

    Article  Google Scholar 

  8. Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48:463–487. https://doi.org/10.1039/C8CS00493E

    Article  CAS  PubMed  Google Scholar 

  9. Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38. https://doi.org/10.1016/j.jiec.2019.03.029

    Article  CAS  Google Scholar 

  10. Teh CY, Budiman PM, Shak KPY, Wu TY (2016) Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind Eng Chem Res 55:4363–4389. https://doi.org/10.1021/acs.iecr.5b04703

    Article  CAS  Google Scholar 

  11. Zhu Y, Zheng Y, Wang W, Wang A (2015) Highly efficient adsorption of Hg(II) and Pb(II) onto chitosan-based granular adsorbent containing thiourea groups. J Water Process Eng 7:218–226. https://doi.org/10.1016/j.jwpe.2015.06.010

    Article  Google Scholar 

  12. Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H (2018) Competent heavy metal adsorption by modified MWCNTs and optimization process by experimental design. J Environ Eng 144:0408114. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001456

    Article  Google Scholar 

  13. Farinelli G, Minella M, Pazzi M, Giannakis S, Pulgarin C, Vione D, Tiraferri A (2020) Natural iron ligands promote a metal-based oxidation mechanism for the Fenton reaction in water environments. J Hazard Mater 393:122413. https://doi.org/10.1016/j.jhazmat.2020.122413

    Article  CAS  PubMed  Google Scholar 

  14. Baruah S, Najam Khan M, Dutta J (2016) Perspectives and applications of nanotechnology in water treatment. Environ Chem Lett 14:1–14. https://doi.org/10.1007/s10311-015-0542-2

    Article  CAS  Google Scholar 

  15. Liu Y, Ong CN, Xie J (2016) Emerging nanotechnology for environmental applications. Nanotechnol Rev 5:1–2. https://doi.org/10.1515/ntrev-2015-0072

    Article  Google Scholar 

  16. Elgarahy AM, Elwakeel KZ, Akhdhar A, Hamza MF (2021) Recent advances in greenly synthesized nanoengineered materials for water/wastewater remediation: an overview. Nanotechnol Environ Eng 6:9. https://doi.org/10.1007/s41204-021-00104-5

    Article  CAS  Google Scholar 

  17. El-Dib FI, Mohamed DE, El-Shamy OAA, Mishrif MR (2020) Study the adsorption properties of magnetite nanoparticles in the presence of different synthesized surfactants for heavy metal ions removal. Egypt J Pet 29:1–7. https://doi.org/10.1016/j.ejpe.2019.08.004

    Article  Google Scholar 

  18. Benettayeb A, Morsli A, Elwakeel KZ, Hamza MF, Guibal E (2021) Recovery of heavy metal ions using magnetic glycine-modified chitosan—application to aqueous solutions and tailing leachate. Appl Sci 11:8377. https://doi.org/10.3390/app11188377

    Article  CAS  Google Scholar 

  19. Elwakeel KZ, Daher AM, Fatah AILAE, Monem HAE, Khalil MMH (2017) Biosorption of lanthanum from aqueous solutions using magnetic alginate beads. J Dispers Sci Technol 38:145–151. https://doi.org/10.1080/01932691.2016.1146617

    Article  CAS  Google Scholar 

  20. Verma R, Asthana A, Singh AK, Prasad S (2017) An arginine functionalized magnetic nano-sorbent for simultaneous removal of three metal ions from water samples. RSC Adv 7:51079–51089. https://doi.org/10.1039/c7ra09705k

    Article  CAS  Google Scholar 

  21. Ge F, Li MM, Ye H, Zhao BX (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211–212:366–372. https://doi.org/10.1016/j.jhazmat.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  22. Verma R, Asthana A, Singh AK, Prasad S, Susan MABH (2017) Novel glycine-functionalized magnetic nanoparticles entrapped calcium alginate beads for effective removal of lead. Microchem J 130:168–178. https://doi.org/10.1016/j.microc.2016.08.006

    Article  CAS  Google Scholar 

  23. Saheed IO, Oh WD, Suah FBM (2021) Chitosan modifications for adsorption of pollutants—a review. J Hazard Mater 408:124889. https://doi.org/10.1016/j.jhazmat.2020.124889

    Article  CAS  PubMed  Google Scholar 

  24. Pontoni L, Fabbricino M (2012) Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions—a mini review. Carbohydr Res 356:86–92. https://doi.org/10.1016/j.carres.2012.03.042

    Article  CAS  PubMed  Google Scholar 

  25. Vilela PB, Dalalibera A, Duminelli EC, Becegato VA, Paulino AT (2019) Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel. Environ Sci Pollut Res 26:28481–28489. https://doi.org/10.1007/s11356-018-3208-3

    Article  CAS  Google Scholar 

  26. Zhang M, Zhang Z, Peng Y, Feng L, Li X, Zhao C, Sarfaraz K (2020) Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range. Int J Biol Macromol 156:289–301. https://doi.org/10.1016/j.ijbiomac.2020.04.020

    Article  CAS  PubMed  Google Scholar 

  27. Kuang SP, Wang ZZ, Liu J, Wu ZC (2013) Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions. J Hazard Mater 260:210–219. https://doi.org/10.1016/j.jhazmat.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  28. Galangash MM, Montazeri MM, Ghavidast A, Siboni MS (2018) Synthesis of carboxyl-functionalized magnetic nanoparticles for adsorption of malachite green from water: kinetics and thermodynamics studies. J Chin Chem Soc 65:940–950. https://doi.org/10.1002/jccs.201700361

    Article  CAS  Google Scholar 

  29. Ojemaye MO, Okoh AI (2019) Multiple nitrogen functionalized magnetic nanoparticles as an efficient adsorbent: synthesis, kinetics, isotherm and thermodynamic studies for the removal of rhodamine B from aqueous solution. Sci Rep 9:9672. https://doi.org/10.1038/s41598-019-45293-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sahbaz DA, Yakar A, Gündüz U (2018) Magnetic Fe3O4-chitosan micro- and nanoparticles for wastewater treatment. Part Sci Technol 37:732–740. https://doi.org/10.1080/02726351.2018.1438544

    Article  CAS  Google Scholar 

  31. Vlazan P, Miron I, Sfirloaga P (2015) Cobalt ferrite substituted with Mn: synthesis method, characterization and magnetic properties. Ceram Int 41:3760–3765. https://doi.org/10.1016/j.ceramint.2014.11.051

    Article  CAS  Google Scholar 

  32. Zulkania A, Hanum GF, Rezki AS (2018) The potential of activated carbon derived from bio-char waste of bio-oil pyrolysis as adsorbent. MATEC Web Conf 154:01029. https://doi.org/10.1051/matecconf/201815401029

    Article  CAS  Google Scholar 

  33. Rahangdale D, Kumar A (2018) Acrylamide grafted chitosan based ion imprinted polymer for the recovery of cadmium from nickel-cadmium battery waste. J Environ Chem Eng 6:1828–1839. https://doi.org/10.1016/j.jece.2018.02.027

    Article  CAS  Google Scholar 

  34. Sahare SP, Wankhade AV, Sinha AK, Zodape SP (2022) Modified cobalt ferrite entrapped chitosan beads as a magnetic adsorbent for effective removal of malachite green and copper (II) ions from aqueous solutions. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-022-02491-x

    Article  Google Scholar 

  35. Şimşek S, Şenol ZM, Ulusoy Hİ (2017) Synthesis and characterization of a composite polymeric material including chelating agent for adsorption of uranyl ions. J Hazard Mater 338:437–446. https://doi.org/10.1016/j.jhazmat.2017.05.059

    Article  CAS  PubMed  Google Scholar 

  36. Ristic M, Krehula S, Reissner M, Jean M, Hannoyer B, Musić S (2017) Synthesis and properties of precipitated cobalt ferrite nanoparticles. J Mol Struct 1140:32–38. https://doi.org/10.1016/j.molstruc.2016.09.067

    Article  CAS  Google Scholar 

  37. Zheng L, Fang K, Zhang M, Nan Z, Zhao L, Zhou D, Zhu M, Li W (2018) Tuning of spinel magnesium ferrite nanoparticles with enhanced magnetic properties. RSC Adv 8:39177–39181. https://doi.org/10.1039/c8ra07487a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Druc AC, Borhan AI, Diaconu A, Iordan AR, Nedelcu GG, Leontie L, Palamaru MN (2014) How cobalt ions substitution changes the structure and dielectric properties of magnesium ferrite? Ceram Int 40:13573–13578. https://doi.org/10.1016/j.ceramint.2014.05.071

    Article  CAS  Google Scholar 

  39. Malwal D, Gopinath P (2017) Silica stabilized magnetic-chitosan beads for removal of arsenic from water. Colloids Interface Sci Commun 19:14–19. https://doi.org/10.1016/j.colcom.2017.06.003

    Article  CAS  Google Scholar 

  40. Ahmad R, Mirza A (2015) Sequestration of heavy metal ions by methionine modified bentonite/Alginate (Meth-bent/Alg): a bionanocomposite. Groundw Sustain Dev 1:50–58. https://doi.org/10.1016/j.gsd.2015.11.003

    Article  Google Scholar 

  41. Chu Y, Zhu S, Xia M, Wang F, Lei W (2020) Methionine-montmorillonite composite—a novel material for efficient adsorption of lead ions. Adv Powder Technol 31:708–717. https://doi.org/10.1016/j.apt.2019.11.026

    Article  CAS  Google Scholar 

  42. Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H (2018) Design and evaluation of functionalized multi-walled carbon nanotubes by 3-aminopyrazole for the removal of Hg(II) and As(III) ions from aqueous solution. Res Chem Intermed 44:69–92. https://doi.org/10.1007/s11164-017-3091-4

    Article  CAS  Google Scholar 

  43. Vakili M, Mojiri A, Zwain HM, Yuan J, Giwa AS, Wang W, Gholami F, Guo X, Cagnetta G, Yu G (2019) Effect of beading parameters on cross-linked chitosan adsorptive properties. React Funct Polym 144:104354. https://doi.org/10.1016/j.reactfunctpolym.2019.104354

    Article  CAS  Google Scholar 

  44. Azlan K, Saime WNN, Ken LL (2009) Chitosan and chemically modified chitosan beads for acid dyes sorption. J Environ Sci 21:296–302. https://doi.org/10.1016/S1001-0742(08)62267-6

    Article  CAS  Google Scholar 

  45. Şenol ZM (2021) A chitosan-based composite for adsorption of uranyl ions; mechanism, isothems, kinetics and thermodynamics. Int J Biol Macromol 183:1640–1648. https://doi.org/10.1016/j.ijbiomac.2021.05.130

    Article  CAS  PubMed  Google Scholar 

  46. Sahoo JK, Paikra SK, Mishra M, Sahoo H (2019) Amine functionalized magnetic iron oxide nanoparticles: synthesis, antibacterial activity and rapid removal of congo red dye. J Mol Liq 282:428–440. https://doi.org/10.1016/j.molliq.2019.03.033

    Article  CAS  Google Scholar 

  47. Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H (2019) Preparation and characterization of functionalized MWCNTs-COOH with 3-amino-5-phenylpyrazole as an adsorbent and optimization study using central composite design. Carbon Lett 29:1–20. https://doi.org/10.1007/s42823-019-00001-7

    Article  Google Scholar 

  48. Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H (2017) Highly efficient simultaneous adsorption of Cd(II), Hg(II) and As(III) ions from aqueous solutions by modification of graphene oxide with 3-aminopyrazole: central composite design optimization. New J Chem 41:8905–8919. https://doi.org/10.1039/C7NJ01450C

    Article  CAS  Google Scholar 

  49. Şimşek S, Kaya S, Mine Şenol Z, İbrahim Ulusoy H, Katin KP, Özer A, Altunay N, Brahmia A (2022) Theoretical and experimental insights about the adsorption of uranyl ion on a new designed vermiculite-polymer composite. J Mol Liq 352:118727. https://doi.org/10.1016/j.molliq.2022.118727

    Article  CAS  Google Scholar 

  50. Can N, Omur BC, Altındal A (2016) Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film. Sens Actuat B Chem 237:953–961. https://doi.org/10.1016/j.snb.2016.07.026

    Article  CAS  Google Scholar 

  51. Li Y, He J, Zhang K, Liu T, Hu Y, Chen X, Wang C, Huang X, Kong L, Liu J (2019) Super rapid removal of copper, cadmium and lead ions from water by NTA-silica gel. RSC Adv 9:397–407. https://doi.org/10.1039/C8RA08638A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sutirman ZA, Sanagi MM, Karim KJA, Ibrahim WAW, Jume BH (2018) Equilibrium, kinetic and mechanism studies of Cu(II) and Cd(II) ions adsorption by modified chitosan beads. Int J Biol Macromol 116:255–263. https://doi.org/10.1016/j.ijbiomac.2018.05.031

    Article  CAS  PubMed  Google Scholar 

  53. Kumar M, Tripathi BP, Shahi VK (2009) Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater. J Hazard Mater 172:1041–1048. https://doi.org/10.1016/j.jhazmat.2009.07.108

    Article  CAS  PubMed  Google Scholar 

  54. Ngah WSW, Endud CS, Mayanar R (2002) Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym 50:181–190. https://doi.org/10.1016/S1381-5148(01)00113-4

    Article  CAS  Google Scholar 

  55. Hussain MS, Musharraf SG, Bhanger MI, Malik MI (2020) Salicylaldehyde derivative of nano-chitosan as an efficient adsorbent for lead(II), copper(II), and cadmium(II) ions. Int J Biol Macromol 147:643–652. https://doi.org/10.1016/j.ijbiomac.2020.01.091

    Article  CAS  PubMed  Google Scholar 

  56. Sellaoui L, Soetaredjo FE, Ismadji S, Petriciolet AB, Belver C, Bedia J, Lamine AB, Erto A (2018) Insights on the statistical physics modeling of the adsorption of Cd2+ and Pb2+ ions on bentonite-chitosan composite in single and binary systems. Chem Eng J 354:569–576. https://doi.org/10.1016/j.cej.2018.08.073

    Article  CAS  Google Scholar 

  57. Yang Y, Zeng L, Lin Z, Jiang H, Zhang A (2021) Adsorption of Pb2+, Cu2+ and Cd2+ by sulfhydryl modified chitosan beads. Carbohydr Polym 274:118622. https://doi.org/10.1016/j.carbpol.2021.118622

    Article  CAS  PubMed  Google Scholar 

  58. Li J, Jiang B, Liu Y, Qiu C, Hu J, Qian G, Guo W, Ngo HH (2017) Preparation and adsorption properties of magnetic chitosan composite adsorbent for Cu2+ removal. J Clean Prod 158:51–58. https://doi.org/10.1016/j.jclepro.2017.04.156

    Article  CAS  Google Scholar 

  59. Elwakeel KZ, Aly MH, Howety MAE, Fadaly EE, Said AA (2018) Synthesis of Chitosan@activated carbon beads with abundant amino groups for capture of Cu(II) and Cd(II) from aqueous solutions. J Polym Environ 26:3590–3602. https://doi.org/10.1007/s10924-018-1243-2

    Article  CAS  Google Scholar 

  60. Elwakeel KZ, Bindary AAE, Kouta EY, Guibal E (2018) Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu(II), Cd(II) and Pb(II) metal ions. Chem Eng J 332:727–736. https://doi.org/10.1016/j.cej.2017.09.091

    Article  CAS  Google Scholar 

  61. Zafar S, Khan MI, Rehman HU, Garcia JF, Shahida S, Prapamonthon P, Khraisheh M, Rehman AU, Ahmad HB, Mirza ML, Khalid N, Lashari MH (2020) Kinetic, equilibrium, and thermodynamic studies for adsorptive removal of cobalt ions by rice husk from aqueous solution. Desalination Water Treat 204:285–296. https://doi.org/10.5004/dwt.2020.26270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are deeply indebted to UGC-DAE-CSR, Indore for bearing financial expenditure (CSR-IC-BL/CRS-135-2015-15/123 and 67/CRS-184-2016-17/848). We are grateful to Dr. A. K. Sinha, RRCAT, Indore for offering facilities to use instruments. The grant SR/FST/CSI-279/2016(C) provided to our department by DST-FIST is gratefully acknowledged by the authors. We are grateful to Biorender.com for making available the platform to create the graphical abstract.

Funding

This study was supported by the UGC-DAE Consortium for Scientific Research, University Grants Commission, CSR-IC-BL/CRS-135-2015-15/123 and 67/CRS-184-2016-17/848.

Author information

Authors and Affiliations

Authors

Contributions

SPS: Data curation, Investigation, Writing—original draft. SPZ: Formal analysis, Visualization, Supervision, Conceptualization, Methodology, Validation, Writing—review and editing.

Corresponding author

Correspondence to Sangesh P. Zodape.

Ethics declarations

Conflict of interest

All the authors declared no conflict of interest which has an impact on the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 836 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahare, S.P., Zodape, S.P. Removal of Cu(II) and Cd(II) Ions from Aqueous Solutions by Methionine Functionalized Cobalt-Magnesium Ferrite Chitosan Beads: Performance and Adsorption Mechanism. J Polym Environ 31, 1967–1985 (2023). https://doi.org/10.1007/s10924-022-02724-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02724-7

Keywords

Navigation