Skip to main content
Log in

Modified Cobalt Ferrite Entrapped Chitosan Beads as a Magnetic Adsorbent for Effective Removal of Malachite Green and Copper (II) Ions from Aqueous Solutions

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The applicability of magnetic cobalt ferrite entrapped chitosan beads (NH2-CF-CB) in water treatment is of research interest due to its biodegradable and cost-effective production. Amino-functionalized magnetic nanoparticles are entrapped into chitosan beads which increases the binding sites for pollutants and makes magnetic separation easier. The feasibility of amino-functionalized magnetic chitosan beads was evaluated for malachite green dye and copper (II) ions. The synthesized NH2-CF-CB adsorbent was characterized by the X-ray diffraction (XRD), fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS), Braunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM) techniques. The adsorption of malachite green and copper (II) ions followed pseudo second order kinetics, which indicates chemisorption for both the pollutants. The maximum adsorption capacities of 357.16 and 158.73 mg.g−1 on NH2-CF-CB for malachite green and copper (II) ions respectively were evaluated from the Langmuir adsorption isotherm model. The superlative adsorption capacities with reusability and ease of separation characteristics for adsorption of malachite green (organic pollutant) as well as copper (II) ions (inorganic pollutants) make NH2-CF-CB unusual low-cost adsorbent to diminish water pollution concern.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308, 438–462 (2017). https://doi.org/10.1016/j.cej.2016.09.029

    Article  CAS  Google Scholar 

  2. W.S. Chai, J.Y. Cheun, P.S. Kumar, M. Mubashir, Z. Majeed, F. Banat, S.H. Ho, P.L. Show, A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clea. Prod. 296, 126589 (2021). https://doi.org/10.1016/j.jclepro.2021.126589

    Article  CAS  Google Scholar 

  3. Y. Wen, J. Ma, J. Chen, C. Shen, H. Li, W. Liu, Carbonaceous sulfur-containing chitosan–Fe(III): a novel adsorbent for efficient removal of copper (II) from water. Chem. Eng. J. 259, 372–380 (2015). https://doi.org/10.1016/j.cej.2014.08.011

    Article  CAS  Google Scholar 

  4. S. Hu, J. Song, F. Zhao, X. Meng, G. Wu, Highly sensitive and selective colorimetric naked-eye detection of Cu2+ in aqueous medium using a hydrazine chemosensor. Sens. Actuators B chem. 215, 241–248 (2015). https://doi.org/10.1016/j.snb.2015.03.059

    Article  CAS  Google Scholar 

  5. M. Choudhary, R. Kumar, S. Neogi, Activated biochar derived from opuntiaficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J. Hazard. Mater. 392, 122441 (2020). https://doi.org/10.1016/j.jhazmat.2020.122441

    Article  CAS  Google Scholar 

  6. S. Wang, E. Ariyanto, Competitive adsorption of malachite green and Pb ions on natural zeolite. J. Colloid Interface Sci. 314, 25–31 (2007). https://doi.org/10.1016/j.jcis.2007.05.032

    Article  CAS  Google Scholar 

  7. M.Y. Zhou, P. Zhang, L.F. Fang, B.K. Zhu, J.L. Wang, J.H. Chen, H.M. Abdallah, A positively charged tight UF membrane and its properties for removing trace metal cations via electrostatic repulsion mechanism. J. Hazard. Mater. 373, 168–175 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.088

    Article  CAS  Google Scholar 

  8. L.G.M. Silva, F.C. Moreira, M.A.P. Cechinel, L.P. Mazur, A.A.U. Souza, S.M.A.G.U. Souza, R.A.R. Boaventura, V.J.P. Vilar, Integration of Fenton’s reaction based processes and cation exchange processes in textile wastewater treatment as a strategy for water reuse. J. Environ. Manage. 272, 111082 (2020). https://doi.org/10.1016/j.jenvman.2020.111082

    Article  CAS  Google Scholar 

  9. M.B.K. Suhan, S.B. Shuchi, A. Anis, Z. Haque, M.S. Islam, Comparative degradation study of remazol black B dye using electro-coagulation and electro-Fenton process: Kinetics and cost analysis. Environ. Nanotechnol. Monit. Manag. 14, 100335 (2020). https://doi.org/10.1016/j.enmm.2020.100335

    Article  Google Scholar 

  10. A. Pohl, Removal of heavy metal ions from water and wastewaters by sulphur containing precipitation agents. Water Air Soil Pollut. 231, 503 (2020). https://doi.org/10.1007/s11270-020-04863-w

    Article  CAS  Google Scholar 

  11. S.B. Doltade, Y.J. Yadav, N.L. Jadhav, Industrial wastewater treatment using oxidative integrated approach. S. Afr. J. Chem. Eng. 40, 100–106 (2022). https://doi.org/10.1016/j.sajce.2022.02.004

    Article  Google Scholar 

  12. R. Verma, A. Asthana, A.K. Singh, S. Prasad, M.A.B.H. Susan, Novel glycine-functionalized magnetic nanoparticles entrapped calcium alginate beads for effective removal of lead. Microchem. J. 130, 168–178 (2017). https://doi.org/10.1016/j.microc.2016.08.006

    Article  CAS  Google Scholar 

  13. T.A. Aragaw, F.M. Bogale, B.A. Aragaw, Iron-based nanoparticles in wastewater treatment: a review on synthesis methods, applications, and removal mechanisms. J. Saudi Chem. Soc. 25, 101280 (2021). https://doi.org/10.1016/j.jscs.2021.101280

    Article  CAS  Google Scholar 

  14. R. Verma, A. Asthana, A.K. Singh, S. Prasad, An arginine functionalized magnetic nano-sorbent for simultaneous removal of three metal ions from water samples. RSC Adv. 7, 51079 (2017). https://doi.org/10.1039/C7RA09705K

    Article  CAS  Google Scholar 

  15. S. Simsek, Z.M. Senol, H.I. Ulusoy, Synthesis and characterization of a composite polymeric material including chelating agent for adsorption of Uranyl ions. J. Hazard. Mater. 338, 437–446 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.059

    Article  CAS  Google Scholar 

  16. I. Ali, C. Peng, I. Naz, M.A. Amjed, Water purification using magnetic nanomaterials: an overview. Magn. Nanostructures (2019). https://doi.org/10.1007/978-3-030-16439-3_9

    Article  Google Scholar 

  17. M.E. Mahmouda, M.S. Abdelwahab, E.M. Fathallah, Design of novel nano-sorbents based on nano-magnetic iron oxide–bound-nano-silicon oxide–immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chem. Eng. J. 223, 318–327 (2013). https://doi.org/10.1016/j.cej.2013.02.097

    Article  CAS  Google Scholar 

  18. M. Zhang, Z. Zhang, Y. Peng, L. Feng, X. Li, C. Zhao, K. Sarfaraz, Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range. Int. J. Biol. Macromol. 156, 289–301 (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.020

    Article  CAS  Google Scholar 

  19. Z.M. Şenol, S. Şimşek, Insights into effective adsorption of lead ions from aqueous solutions by using chitosan-bentonite composite beads. J Polym Environ. 30, 3677–3687 (2022). https://doi.org/10.1007/s10924-022-02464-8

    Article  CAS  Google Scholar 

  20. F. Karimi, A. Ayati, B. Tanhaei, A.L. Sanati, S. Afshar, A. Kardan, Z. Dabirifar, C. Karaman, Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment. Environ. Res. 203, 111753 (2022). https://doi.org/10.1016/j.envres.2021.111753

    Article  CAS  Google Scholar 

  21. Y. Yu, B. He, H. Gu, Adsorption of bilirubin by amine containingcrosslinked chitosan resins, Art. Cells, Blood Subs, and Immob. Biotech. 28, 307–320 (2000). https://doi.org/10.3109/10731190009119361

    Article  CAS  Google Scholar 

  22. P. Coppola, F.G. da Silva, G. Gomide, F.L.O. Paula, A.F.C. Campos, R. Perzynski, C. Kern, J. Depeyrot, R. Aquino, Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties. J. Nanopart. Res. 18, 138 (2016). https://doi.org/10.1007/s11051-016-3430-1

    Article  CAS  Google Scholar 

  23. Z. Chen, B. Peng, J.Q. Xu, X.C. Xiang, D.F. Ren, T.Q. Yang, S.Y. Ma, K. Zhang, Q.M. Chen, A non-surfactant self-templating strategy for mesoporous silica nanospheres: beyond the Stöber method. Nanoscale 12, 3657 (2020). https://doi.org/10.1039/c9nr10939k

    Article  CAS  Google Scholar 

  24. T. Gholami, M.S. Niasari, M. Bazarganipour, E. Noori, Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by organic ligand. SuperlatticesMicrostruct. 61, 33–41 (2013). https://doi.org/10.1016/j.spmi.2013.06.004

    Article  CAS  Google Scholar 

  25. P. Parand, M. Mohammadi, A.A.S. Akmal, M. Samadpour, M. Dehghani, E. Parvazian, Sequential RTV/(TiO2/SiO2) nanocomposite deposition for suppressing the leakage current in silicone rubber insulators. Appl. Phys. A 126, 333 (2020). https://doi.org/10.1007/s00339-020-03522-5

    Article  CAS  Google Scholar 

  26. D. Malwal, P. Gopinath, Silica stabilized magnetic-chitosan beads for removal of arsenic from water. Colloids Interface Sci. Commun. 19, 14–19 (2017). https://doi.org/10.1016/j.colcom.2017.06.003

    Article  CAS  Google Scholar 

  27. J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interface Sci. 349, 293–299 (2010). https://doi.org/10.1016/j.jcis.2010.05.010

    Article  CAS  Google Scholar 

  28. M. Vakili, A. Mojiri, H.M. Zwain, J. Yuan, A.S. Giwa, W. Wang, F. Gholami, X. Guo, G. Cagnettag, Gang Yu, Effect of beading parameters on cross-linked chitosan adsorptive properties. React. Funct. Polym. 144, 104354 (2019). https://doi.org/10.1016/j.reactfunctpolym.2019.104354

    Article  CAS  Google Scholar 

  29. A. Kamari, W. Saime, W. Ngah, L.K. Liew, Chitosan and chemically modified chitosan beads for acid dyes sorption. J. Environ. Sci. 21, 296–302 (2009). https://doi.org/10.1016/S1001-0742(08)62267-6

    Article  CAS  Google Scholar 

  30. N.P. Raval, P.U. Shah, N.K. Shah, Nanoparticles loaded biopolymer as effective adsorbent for adsorptive removal of malachite green from aqueous solution. Water Conserv. Sci. Eng. 1, 69–81 (2016). https://doi.org/10.1007/s41101-016-0004-0

    Article  Google Scholar 

  31. S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265, 159–168 (2011). https://doi.org/10.1016/j.desal.2010.07.047

    Article  CAS  Google Scholar 

  32. Z.M. Şenol, A chitosan-based composite for adsorption of uranyl ions; mechanism, isothems, kinetics and thermodynamics. Int. J. Biol. Macromol. 183, 1640–1648 (2021). https://doi.org/10.1016/j.ijbiomac.2021.05.130

    Article  CAS  Google Scholar 

  33. Y. Zhu, Y. Zheng, W. Wang, A. Wang, Highly efficient adsorption of Hg(II) and Pb(II) onto chitosan-basedgranular adsorbent containing thiourea groups. J. Water Process. Eng. 7, 218–226 (2015). https://doi.org/10.1016/j.jwpe.2015.06.010

    Article  Google Scholar 

  34. A.R. Kula, H. Koyuncub, Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: Kinetic, equilibrium and thermodynamic study. J. Hazard. Mater. 179, 332–339 (2010)

    Article  Google Scholar 

  35. S.P. Markandeya, G.C. Shukla, Kisku, Linear and non-linear kinetic modeling for adsorption of disperse dye in batch process. Res. J. Environ. Toxicol. (2015). https://doi.org/10.3923/rjet.2015.320.331

    Article  Google Scholar 

  36. S. Simsek, S. Kaya, Z.M. Senol, H.I. Ulusoy, K.P. Katin, A. Özer, N. Altunay, A. Brahmia, Theoretical and experimental insights about the adsorption of uranyl ion on a new designed Vermiculite-Polymer composite. J. Mol. Liq. 352, 118727 (2022). https://doi.org/10.1016/j.molliq.2022.118727

    Article  CAS  Google Scholar 

  37. N.K. Amin, Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. J. Hazard. Mater. 165, 52–62 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.067

    Article  CAS  Google Scholar 

  38. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR. J. Appl. Chem. 3, 38–45 (2012). https://doi.org/10.9790/5736-0313845

    Article  CAS  Google Scholar 

  39. V.M. Muinde, J.M. Onyari, B. Wamalwa, J.N. Wabomba, Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan–zinc oxide composite material. Environ. Chem. Ecotoxicol. 2, 115–125 (2020). https://doi.org/10.1016/j.enceco.2020.07.005

    Article  Google Scholar 

  40. Y.C. Sharma, Adsorption characteristics of a low-cost activated carbon for the reclamation of colored effluents containing malachite green. J. Chem. Eng. Data 56, 478–484 (2011). https://doi.org/10.1021/je1008922

    Article  CAS  Google Scholar 

  41. Z. Bekci, C. Ozveri, YSeki, K. Yurdakoc, Sorption of malachite green on chitosan bead. J. Hazard. Mater. 154, 254–261 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.021

    Article  CAS  Google Scholar 

  42. B.H. Hameeda, M.I.E. Khaiary, Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. J. Hazard. Mater. 153, 701–708 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.019

    Article  CAS  Google Scholar 

  43. Equilibrium and kinetic studies and process design, E. Bulut, M. O.zacar, I. A. Sengil, Adsorption of malachite green onto bentonite. Microporous Mesoporous Mater. 115, 234–246 (2008). https://doi.org/10.1016/j.micromeso.2008.01.039

    Article  CAS  Google Scholar 

  44. Y. Onal, C.A. Basar, C.S. Ozdemir, Investigation kinetics mechanisms of adsorption malachite green onto activated carbon. J. Hazard. Mater. 146, 194–203 (2007). https://doi.org/10.1016/j.jhazmat.2006.12.006

    Article  CAS  Google Scholar 

  45. B.H. Hameeda, M.I.E. Khaiary, Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. J Hazard Mater. 157, 344–351 (2008). https://doi.org/10.1016/j.jhazmat.2007.12.105

    Article  CAS  Google Scholar 

  46. S.J. Aitcheson, J. Arnett, K.R. Murray, J. Zhang, Removal of aquaculture therapeutants by carbon adsorption: 1 Equilibrium adsorption behaviour of single components. Aquaculture 183, 269–284 (2000). https://doi.org/10.1016/S0044-8486(99)00304-X

    Article  CAS  Google Scholar 

  47. W.S.W. Ngah, N.F.M. Ariff, A. Hashim, M.A.K.M. Hanafiah, Malachite green adsorption onto chitosan coated bentonite beads: isotherms, kinetics and mechanism. Clean—Soil, Air, Water 38, 394–400 (2010). https://doi.org/10.1002/clen.200900251

    Article  CAS  Google Scholar 

  48. W.S.W. Ngah, S. Fatinathan, Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J. Environ. Manage. 91, 958–969 (2010). https://doi.org/10.1016/j.jenvman.2009.12.003

    Article  CAS  Google Scholar 

  49. X. Hu, Y. Liu, H. Wang, A. Chen, G. Zeng, S. Liu, Y. Guo, X. Hu, T. Li, Y. Wang, L. Zhou, S. Liu, Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep. Purif. Technol. 108, 189–195 (2013). https://doi.org/10.1016/j.seppur.2013.02.011

    Article  CAS  Google Scholar 

  50. Y. Chen, B. Pan, H. Li, W. Zhang, L. Lv, J. Wu, Selective removal of Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters. Environ. Sci. Technol. 44, 3508–3513 (2010). https://doi.org/10.1021/es100341x

    Article  CAS  Google Scholar 

  51. M. Monier, D.M. Ayad, Y. Wei, A.A. Sarhan, Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J. Hazard. Mater. 177, 962–970 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.012

    Article  CAS  Google Scholar 

  52. F. Liu, K. Zhou, Q. Chen, A. Wang, W. Chen, Application of magnetic ferrite nanoparticles for removal of Cu(II) from copper ammonia wastewater. J. Alloys Compd 773, 140–149 (2019). https://doi.org/10.1016/j.jallcom.2018.09.240

    Article  CAS  Google Scholar 

  53. D. Kong, N. Qiao, H. Liu, J. Du, N. Wang, Z. Zhou, Z. Ren, Fast and efficient removal of copper using sandwich-like graphene oxide composite imprinted materials. Chem. Eng. J. 326, 141–150 (2017). https://doi.org/10.1016/j.cej.2017.05.140

    Article  CAS  Google Scholar 

  54. L. Lv, N. Chen, C. Feng, J. Zhanga, M. Li, Heavy metal ions removal from aqueous solution by xanthate-modified cross-linked magnetic chitosan/poly(vinyl alcohol) particles. RSC Adv. 7, 27992 (2017). https://doi.org/10.1039/c7ra02810e

    Article  CAS  Google Scholar 

  55. J. He, K. Zhang, S. Wu, X. Cai, K. Chen, Y. Li, B. Sun, Y. Jia, F. Meng, Z. Jin, L. Kong, J. Liu, Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water. J. Hazard. Mater. 303, 119–130 (2016). https://doi.org/10.1016/j.jhazmat.2015.10.028

    Article  CAS  Google Scholar 

  56. Y. Li, J. He, K. Zhang, T. Liu, Y. Hu, X. Chen, C. Wang, X. Huang, L. Kong, J. Liua, Super rapid removal of copper, cadmium and lead ions from water by NTA-silica gel. RSC Adv. 9, 397–407 (2019). https://doi.org/10.1039/c8ra08638a

    Article  CAS  Google Scholar 

  57. C.S. Sundaram, N. Viswanathan, S. Meenakshi, Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies. J. Hazard. Mater. 115, 206–215 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.048

    Article  CAS  Google Scholar 

Download references

Funding

We are thankful to UGC-DAE-CSR, Indore for providing financial support (CSR-IC-BL-67/CRS-184–2016-17/848 and CSR-IC-BL-38/CRS-135–2014-15/123). We are also thankful to Shri R. K. Sharma, RRCAT, Indore for providing experimental facility. Authors are also thankful to DST for providing DST-FIST grant SR/FST/CSI-279/2016(C). We are thankful to Biorender.com for providing platform to draw graphical abstract.

Author information

Authors and Affiliations

Authors

Contributions

SPS: Data curation, Investigation, Writing—Original draft preparation. AVW: Data Validation, Methodology. AKS: Investigation, Formal analysis. SPZ: Supervision, Conceptualization, Validation, Writing—Reviewing and Editing.

Corresponding author

Correspondence to Sangesh P. Zodape.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 653 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahare, S.P., Wankhade, A.V., Sinha, A.K. et al. Modified Cobalt Ferrite Entrapped Chitosan Beads as a Magnetic Adsorbent for Effective Removal of Malachite Green and Copper (II) Ions from Aqueous Solutions. J Inorg Organomet Polym 33, 266–286 (2023). https://doi.org/10.1007/s10904-022-02491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02491-x

Keywords

Navigation