Skip to main content
Log in

Pectin/Xylitol Incorporated with Various Metal Oxide Based Nanocomposite Films for its Antibacterial and Antioxidant Activity

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, we have developed homogeneous, biogenic biopolymers blended different metal oxide nanoparticles by simple solution casting method. The antibacterial activity of bio blended nanocomposite films with various metal oxide nanoparticles such as silver, zinc and copper were carried out against pathogenic bacteria such as E. coli and S. aureus was evaluated using the agar well diffusion method, which revealed that silver based blended nanocomposite films showed enhanced bactericidal activity which is further carried out for antioxidant activity using DPPH and ABTS scavenging assay. As a result of this interaction, the pectin and xylitol blended silver nanocomposite film matrix evidenced an IC50 of 50.59 with a strong antioxidant activity, which makes it suitable for future food wrapper and wound healing applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhushan B (2017) Springer handbook of nanotechnology to nanotechnology. Springer, Berlin. https://doi.org/10.1007/978-3-662-54357-31

    Book  Google Scholar 

  2. Nasrollahzadeh M (2019) An introduction to green nanotechnology. In: Nasrollahzadeh M (ed) An introduction to nanotechnology, vol 28. Elsevier, Amsterdam, pp 1–27. https://doi.org/10.1016/B978-0-12-813586-0.00001-8

    Chapter  Google Scholar 

  3. West JL, Halas NJ (2000) Applications of nanotechnology to biotechnology: commentary. Curr Opin Biotechnol 11(2):215–217. https://doi.org/10.1016/s0958-1669(00)00082-3

    Article  CAS  PubMed  Google Scholar 

  4. Schnepp Z (2013) Biopolymers as a flexible resource for nanochemistry. Angew Chem Int Edn 52(4):1096–1108. https://doi.org/10.1002/anie.201206943

    Article  CAS  Google Scholar 

  5. Giesa T, Buehler MJ (2013) Nanoconfinement and the strength of biopolymers. Annu Rev Biophys 42(1):651–673. https://doi.org/10.1146/annurev-biophys-083012-130345

    Article  CAS  PubMed  Google Scholar 

  6. George A, Sanjay MR, Sriusk R, Parameswaranpillai J, Siengchin S (2020) A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.03.120

    Article  PubMed  Google Scholar 

  7. Reddy N, Reddy R, Jiang Q (2015) Cross linking biopolymers for biomedical applications. Trends Biotechnol 33(6):362–369. https://doi.org/10.1016/j.tibtech.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  8. Sivakanthan S, Rajendran S, Gamage A, Madhujith T, Mani S (2020) Antioxidant and antimicrobial applications of biopolymers: a review. Food Res Int. https://doi.org/10.1016/j.foodres.2020.109327

    Article  PubMed  Google Scholar 

  9. Nikolova MP, Chavali MS (2020) Metal oxide nanoparticles as biomedical materials. Biomimetics 5(2):27. https://doi.org/10.3390/biomimetics5020027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nikolic MV, Vasiljevic ZZ, Auger S, Vidic J (2021) Metal oxide nanoparticles for safe active and intelligent food packaging. Trends Food Sci Technol 116:655–668. https://doi.org/10.1016/j.tifs.2021.08.019

    Article  CAS  Google Scholar 

  11. Mallakpour S, Azadi E, Hussain CM (2021) The latest strategies in the fight against the COVID-19 pandemic: the role of metal and metal oxide nanoparticles. New J Chem 45(14):6167–6179. https://doi.org/10.1039/d1nj00047

    Article  CAS  Google Scholar 

  12. Sadek EM, Mansour NA, Ahmed SM, Abd-El-Messieh SL, El-Komy D (2020) Synthesis, characterization and applications of poly(vinyl chloride) nanocomposites loaded with metal oxide nanoparticles. Polym Bull. https://doi.org/10.1007/s00289-020-03371-5

    Article  Google Scholar 

  13. Yasmin A, Williams GR (2019) The potential anti-infective applications of metal oxide nanoparticles: a systematic review. Wiley Interdiscip Rev Nanomed Nanobiotechnol. https://doi.org/10.1002/wnan.1592

    Article  Google Scholar 

  14. Rhim J-W, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433. https://doi.org/10.1080/10408390600846366

    Article  CAS  PubMed  Google Scholar 

  15. Liu T, Tong Y, Zhang W-D (2007) Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films. Compos Sci Technol 67(3–4):406–412. https://doi.org/10.1016/j.compscitech.2006.09.007

    Article  CAS  Google Scholar 

  16. Janani N, Zare EN, Salimi F, Makvandi P (2020) Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116678

    Article  PubMed  Google Scholar 

  17. Haghighi H, Gullo M, La China S, Pfeifer F, Siesler HW, Licciardello F, Pulvirenti A (2020) Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2020.106454

    Article  Google Scholar 

  18. Rojas R, Alvarez-Pérez OB, Contreras-Esquivel JC, Vicente A, Flores A, Sandoval J, Aguilar CN (2018) Valorisation of mango peels: extraction of pectin and antioxidant and antifungal polyphenols. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-018-0433-4

    Article  Google Scholar 

  19. Melgarejo-Flores BG, Ortega-Ramírez LA, Silva-Espinoza BA, González-Aguilar GA, Miranda MRA, Ayala-Zavala JF (2013) Antifungal protection and antioxidant enhancement of table grapes treated with emulsions, vapours, and coatings of cinnamon leaf oil. Postharvest Biol Technol 86:321–328. https://doi.org/10.1016/j.postharvbio.2013.07.027

    Article  CAS  Google Scholar 

  20. Mo X, Peng X, Liang X, Fang S, Xie H, Chen J, Meng Y (2021) Development of antifungal gelatin-based nanocomposite films functionalized with natamycin-loaded zein/casein nanoparticles. Food Hydrocolloids 113:106506. https://doi.org/10.1016/j.foodhyd.2020.106506

    Article  CAS  Google Scholar 

  21. Chen S, Chen H, Yang S, Fan D (2021) Developing an antifungal and high-strength soy protein-based adhesive modified by lignin-based polymer. Ind Crops Prod 170:113795. https://doi.org/10.1016/j.indcrop.2021.113795

    Article  CAS  Google Scholar 

  22. Meng N, Zhou N-L, Zhang S-Q, Shen J (2009) Synthesis and antifungal activities of polymer/montmorillonite–terbinafine hydrochloride nanocomposite films. Appl Clay Sci. https://doi.org/10.1016/j.clay.2009.07.003

    Article  Google Scholar 

  23. Li Z, Bai H, Jia S, Yuan H, Gao L-H, Liang H (2021) Design of functional polymer nanomaterials for antimicrobial therapy and combatting resistance. Mater Chem Front. https://doi.org/10.1039/D0QM00837K

    Article  Google Scholar 

  24. Zhong Y, Xiao H, Seidi F, Jin Y (2020) Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings. Biomacromol. https://doi.org/10.1021/acs.biomac.0c00760

    Article  Google Scholar 

  25. Rahimi M, Noruzi EB, Sheykhsaran E, Ebadi B, Kariminezhad Z, Molaparast M, Mehrabani MG, Mehramouz B, Yousefi M, Ahmadi R, Yousefi B, Ganbarov K, Kamounah FS, Shafiei-Irannejad V, Kafil HS (2019) Carbohydrate polymer-based silver nanocomposites: recent progress in the antimicrobial wound dressings. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115696

    Article  PubMed  Google Scholar 

  26. Giraud L, Tourrette A, Flahaut E (2021) Carbon nanomaterials-based polymer-matrix nanocomposites for antimicrobial applications: a review. Carbon 182:463–483. https://doi.org/10.1016/j.carbon.2021.06.002

    Article  CAS  Google Scholar 

  27. Urzedo AL, Gonçalves MC, Nascimento MH, Lombello CB, Nakazato G, Seabra AB (2020) Cytotoxicity and antibacterial activity of alginate hydrogel containing nitric oxide donor and silver nanoparticles for topical applications. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.9b01685

    Article  PubMed  Google Scholar 

  28. Luo S, Zhang P, Gao D (2020) Preparation and properties of antimicrobial poly (butylenes adipate-co-terephthalate)/TiO2 nanocomposites films. J Macromol Sci Part B. https://doi.org/10.1080/00222348.2020.1712045

    Article  Google Scholar 

  29. Adams B, Abdelwahab M, Misra M, Mohanty AK (2017) Injection-molded bioblends from lignin and biodegradable polymers: processing and performance evaluation. J Polym Environ 26(6):2360–2373. https://doi.org/10.1007/s10924-017-1132-0

    Article  CAS  Google Scholar 

  30. Ahmed F, Kumar S, Arshi N, Anwar MS, Su-Yeon L, Kil G-S, Park D-W, Koo BH, Lee CG (2011) Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method. Thin Solid Films 519(23):8375–8378

    Article  CAS  Google Scholar 

  31. Shukla MK, Singh RP, Reddy CRK, Jha B (2012) Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresour Technol 107:295–300. https://doi.org/10.1016/j.biortech.2011.11.09

    Article  CAS  PubMed  Google Scholar 

  32. Kumar S, Shukla A, Baul PP, Mitra A, Halder D (2018) Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag Shelf Life 16:178–184. https://doi.org/10.1016/j.fpsl.2018.03.008

    Article  Google Scholar 

  33. Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J 2014:1–9

    Article  Google Scholar 

  34. Buazar F, Sweidi S, Badri M, Kroushawi F (2019) Biofabrication of highly pure copper oxide nanoparticles using wheat seed extract and their catalytic activity: a mechanistic approach. Green Process Synth 8(1):691–702. https://doi.org/10.1515/gps-2019-0040

    Article  CAS  Google Scholar 

  35. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int Scholarly Res Notices 2012:6. https://doi.org/10.5402/2012/372505

    Article  CAS  Google Scholar 

  36. Luo S, Zhang P, Gao D (2020) Preparation and properties of antimicrobial poly(butylene adipate-co-terephthalate)/TiO2 nanocomposites films. J Macromol Sci Part B. https://doi.org/10.1080/00222348.2020.1712045

    Article  Google Scholar 

  37. Suresh S, Karthikeyan S, Jayamoorthy K (2016) FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. J Sci: Adv Mater Devices. https://doi.org/10.1016/j.jsamd.2016.08.004

    Article  Google Scholar 

  38. Muhammad W, Ullah N, Haroon M, Abbasi BH (2019) Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Adv 9(51):29541–29548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hastuti B, Hadi S (2019) Synthesis and characterization of Pectin-chitosan as candidate materials for slow release system. IOP Conf Ser: Mater Sci Eng 617:012002. https://doi.org/10.1088/1757-899X/617/1/012002

    Article  CAS  Google Scholar 

  40. Mishra RK, Datt M, Pal K, Banthia AK (2008) Preparation and characterization of amidated pectin based hydrogels for drug delivery system. J Mater Sci - Mater Med 19(6):2275–2280

    Article  CAS  PubMed  Google Scholar 

  41. Jayarambabu N, Kumari BS, Rao KV, Prabhu YT (2014) Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. Int J Curr Eng Technol 4:2347–5161

    Google Scholar 

  42. Raul PK, Senapati S, Sahoo AK, Umlong IM, Devi RR, Thakur AJ, Veer V (2014) CuO nanorods: a potential and efficient adsorbent in water purification. RSC Adv 4(76):40580–40587

    Article  CAS  Google Scholar 

  43. Roy S, Rhim J-W (2019) Preparation of Carrageenan-Based functional nanocomposite films incorporated with melanin nano-particles. Colloids Surf B 176:317–324

    Article  CAS  Google Scholar 

  44. Dang KM, Yoksan R (2021) Thermoplastic starch blown films with improved mechanical and barrier properties. Int J Biol Macromol 188:290–299

    Article  CAS  PubMed  Google Scholar 

  45. Shameli K, Ahmad MB, Md-Zin WYW, Ibrahim NA, Rahman RA, Jokar M, Darroudi M (2010) Silver/poly(lacticacid) nanocomposites: preparation, characterization, and anti-bacterial activity. Int J Nanomed 5:573

    Article  CAS  Google Scholar 

  46. Roy S, Rhim J-W (2019) Carrageenan-based antimicrobial bionanocomposite films incorporated with Zno nanoparticles stabilized by melanin. Food Hydrocoll 90:500–507

    Article  CAS  Google Scholar 

  47. Umashankari J, Inbakandan D, Ajithkumar TT, Balasubramanian T (2012) Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquatic Biosyst 8(1):1–7

    Article  Google Scholar 

  48. Shankar S, Khodaei D, Lacroix M (2021) Effect of chitosan/essential oils/silver nanoparticles composite films packaging and gamma irradiation on shelf life of strawberries. Food Hydrocoll 117:106750

    Article  CAS  Google Scholar 

  49. Shankar S, Rhim J-W (2018) Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll 82:116–123

    Article  CAS  Google Scholar 

  50. Oun AA, Rhim J-W (2017) Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll 67:45–53

    Article  CAS  Google Scholar 

  51. Jaiswal L, Shankar S, Rhim J-W, Hahm D-H (2020) Lignin- mediated green synthesis of AgNPs in Carrageenan matrix for wound dressing applications. Int J Biol Macromol 159:859–869

    Article  CAS  PubMed  Google Scholar 

  52. Hezaveh H, Muhamad II (2013) Modification and swelling kinetic study of Kappa-Carrageenan-based hydrogel for controlled release study. J Taiwan Inst Chem Eng 44(2):182–191

    Article  CAS  Google Scholar 

  53. Shinwari ZK, Maaza M (2017) The study of structural, physical and electrochemical activity of ZnO nanoparticles synthesized by green natural extracts of sageretia thea. Arch Med 3:9

    Google Scholar 

  54. Manjari G, Saran S, Arun T, Rao AVB, Devipriya SP (2017) Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract. J Saudi Chem Soc 21(5):610–618

    Article  CAS  Google Scholar 

  55. Shin D-Y, Yi G-R, Lee D, Park J, Lee Y-B, Hwang I, Chun S (2013) Rapid two-step metallization through physicochemical conversion of Ag2O for printed “black” transparent conductive films. Nanoscale 5(11):5043–5052

    Article  CAS  PubMed  Google Scholar 

  56. Roy S, Rhim J-W (2020) Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int J Biol Macromol 148:666–676

    Article  CAS  PubMed  Google Scholar 

  57. Roy S, Rhim J-W (2020) Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids Surf B 188:110761

    Article  CAS  Google Scholar 

  58. Xiao X, He E-J, Lu X-R, Wu L-J, Fan Y-Y, Yu H-Q (2021) Evaluation of antibacterial activities of silver nanoparticles on culturability and cell viability of Escherichia coli. Sci Total Environ 794:148765. https://doi.org/10.1016/j.scitotenv.2021.148765

    Article  CAS  PubMed  Google Scholar 

  59. Abdelaziz AM, Dacrory S, Hashem AH, Attia MS, Hasanin M, Fouda HM, ElSaied H (2021) Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatal Agric Biotechnol 35:102083. https://doi.org/10.1016/j.bcab.2021.102083

    Article  CAS  Google Scholar 

  60. Qian J, Chen Y, Wang Q, Zhao X, Yang H, Gong F, Guo H (2021) Preparation and antimicrobial activity of pectin-chitosan embedding nisin microcapsules. Eur Polym J 157:110676

    Article  CAS  Google Scholar 

  61. Ardjoum N, Shankar S, Chibani N, Salmieri S, Lacroix M (2021) In situ synthesis of silver nanoparticles in pectin matrix using gamma irradiation for the preparation of antibacterial pectin/silver nanoparticles composite films. Food Hydrocolloids 121:107000

    Article  CAS  Google Scholar 

  62. Riaz Rajoka MS, Mehwish HM, Zhang H, Ashraf M, Fang H, Zeng X et al (2020) Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids Surf B 186:110734. https://doi.org/10.1016/j.colsurfb.2019.110734

    Article  CAS  Google Scholar 

  63. Von Gadow A, Joubert E, Hansmann CF (1997) Comparison of antioxidant activity of aspalathin with that of other plant phenols of Rooibosed tea (Aspalathon linearis), α-tocopherol, BHT and BHA. J Agric Food Chem 45:632–638

    Article  Google Scholar 

  64. Ponce AG, Fritz R, Del Valle C, Roura SI (2003) Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT-Food Sci Technol 36(7):679–684. https://doi.org/10.1016/S0023-6438(03)00088-4

    Article  CAS  Google Scholar 

  65. Singh J, Dhaliwal AS (2018) Novel green synthesis and characterization of the antioxidant activity of silver nanoparticles prepared from Nepeta leucophylla root extract. Anal Lett. https://doi.org/10.1080/00032719.2018.1454936

    Article  Google Scholar 

  66. Candido GS, Natarelli CVL, Carvalho EEN, Oliveira JE (2022) Bionanocomposites of pectin and pracaxi oil nanoemulsion as active packaging for butter. Food Packag Shelf Life 32:100862

    Article  CAS  Google Scholar 

  67. Yen GC, Duh PD (1994) Scavenging effect of methanolic extracts of peanut hulls on free-radical and active oxygen species. J Agric Food Chem 42:629–632

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the DST-FIST (fund for the improvement of S&T infrastructure) for financial assistance to the Department of Chemistry, SRM-IST, No. SR/FST/CST-266/ 2015(c). The authors also thank the Nanotechnology Research Centre (NRC), SRM-IST, for providing the research facilities and SRM-IST for providing the supercomputing facility and financial support.

Author information

Authors and Affiliations

Authors

Contributions

NP wrote the main manuscript and DS supported in writing the manuscript. AM guided and reviewed the manuscript.

Corresponding author

Correspondence to Devikala Sundaramurthy.

Ethics declarations

Conflict of interest

The authors state that there is no potential declaration of interest and hereby declare that this article has been neither copyrighted, classified, published, nor is being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1075 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panneerselvam, N., Sundaramurthy, D. & Maruthapillai, A. Pectin/Xylitol Incorporated with Various Metal Oxide Based Nanocomposite Films for its Antibacterial and Antioxidant Activity. J Polym Environ 31, 1598–1609 (2023). https://doi.org/10.1007/s10924-022-02652-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02652-6

Keywords

Navigation