Skip to main content
Log in

Injection-Molded Bioblends from Lignin and Biodegradable Polymers: Processing and Performance Evaluation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper investigates the effects of the incorporation of lignin and small quantities of epoxidized natural rubber (ENR) as an impact modifying agent on blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL). The addition of lignin resulted in a slight improvement of flexural strength and modulus of the ternary blending system. Incorporation of ENR into the blend resulted in an increase in notched Izod impact strength from 40 to 135% depending on the concentration of ENR. The addition of lignin into the blend resulted in an improvement of thermal stability of the ternary blend system. Morphological analysis showed a good dispersion of PHBV phases and lignin within the PCL matrix. Rheological characterization revealed that the presence of lignin resulted in increased storage modulus of the bioblend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Drzal L, Selke S, Hate B, Hinrichsen G (2005) Natural fibres, biopolymers, and biocomposites. CRC Press-Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  2. Rostkowski KH, Criddle CS, Lepech MD (2012) Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: biogas-to-bioplastic (and back). Environ Sci Technol 46(18):9822–9829

    CAS  PubMed  Google Scholar 

  3. Owen AJ, Gassner F (1998) Physical properties of PHB-PCL blends. Polymer 35(10):2233–2236

    Google Scholar 

  4. Wang Y, Chen R, Cai J, Lui Z, Zheng Y, Wang H, Li Q, He N (2013) Biosynthesis and thermal properties of PHBV produced from levulinic acid by ralstonia eutropha. PLoS ONE. https://doi.org/10.1371/journal.pone.0060318

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ma P, Hristova-Bogaerds DG, Lemstra PJ, Zhang Y, Wang S (2011) Toughening of PHBV/PBS and PHB/PBS blends via in situ compatibilization using dicumyl peroxide as a free-radical grafting initiator. Macromol Mater Eng 297(5):402–410

    Article  CAS  Google Scholar 

  6. Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Thermo-mechanical characterization of bioblends from polylactide and poly(butylene adipate-co-terephthalate) and lignin. Macromol Mater Eng 300:299–311

    Article  CAS  Google Scholar 

  7. Chen R, Abdelwahab MA, Misra M, Mohanty AK (2014) Biobased ternary blends of lignin, poly(lactic acid), and poly(butylene adipate-co-terephthalate): the effect of lignin heterogeneity on blend morphology and compatibility. J Polym Environ 22:439–448

    Article  CAS  Google Scholar 

  8. Hinuber C, Haussler L, Vogel R, Brunig H, Heinrich G, Werner C (2011) Hollow fibers made from a poly(3-hydroxybutyrate)/polycaprolactone blend. Express Polym Lett 5(7):643–652

    Article  CAS  Google Scholar 

  9. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256

    Article  CAS  Google Scholar 

  10. Brehmer B, Boom RM, Sanders J (2009) Maximum fossil fuel feedstock replacement potential of petrochemical via biorefineries. Chem Eng Res Design 87(9):1103–1119

    Article  CAS  Google Scholar 

  11. Kumar M.N.S., Mohanty AK, Erickson L, Misra M (2009) Lignin and its application with polymers. J Biobased Mater Bioenergy 3:1–24

    Article  CAS  Google Scholar 

  12. Doherty W.O.S., Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33(2):250–276

    Article  CAS  Google Scholar 

  13. Li J, He Y, Inoue Y (2003) Thermal and mechanical properties of biodegradable blends of poly(L-lactic acid) and lignin. Polym Int 52(6):949–955

    Article  CAS  Google Scholar 

  14. Doherty W.O.S., Mousavioun P, Fellows CM (2010) Thermal Stability and Miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind Crops Prod 32(3):656–661

    Article  CAS  Google Scholar 

  15. Ouyang X, Ke L, Qiu X, Guo Y, Pang Y (2009) Sulfonation of alkali lignin and its potential use in dispersant for cement. J Dispers Sci 30(1):1–5

    Article  CAS  Google Scholar 

  16. Nitz H, Semke H, Landers R, Mulhaupt R (2001) Reactive extrusion of polycaprolactone compounds containing wood flour and lignin. J Appl Polym Sci 81(8):1972–1984

    Article  CAS  Google Scholar 

  17. Teramoto Y, Lee S, Ento T (2009) Phase structure and mechanical property of blends of organosolv lignin alkyl esters with poly(epsilon caprolactone). Polym J 41(3):219–227

    Article  CAS  Google Scholar 

  18. Camargo FA, Innocentini-Mei LH, Lemes AP, Moraes SG, Duran N (2012) Processing and characterization of composites of poly(3-hydroxybutyrate-co-hydroxyvalerate) and lignin from sugar cane bagasse. J Compos Mater 46(4):417–425

    Article  CAS  Google Scholar 

  19. Hutterman C, Mai A, Kharazipour (2001) Modification of lignin for the production of new compounded materials. Appl Microb Biotechnol 55:387–394

    Article  Google Scholar 

  20. Saito T, Brown R, Hunt M, Pickel D, Pickel J, Messman J, Baker F, Keller M, Naskar A (2012) Turning renewable resource into value-added polymer: development of lignin-based thermoplastic. Green Chem 14:3295–3306

    Article  CAS  Google Scholar 

  21. Ghosh I, Jain R, Glasser W (1999) Multiphase materials with lignin. XV. Blends of cellulose acetate butyrate with lignin esters. J Appl Polym Sci74(2):448–457

    Article  CAS  Google Scholar 

  22. Yu Y, Fu S, Song P, Luo X, Jin Y, Lu F, Wu Q, Ye J (2012) Functionalization of lignin by grafting phosphorus-nitrogen improves the flame retardancy and thermal stability of polypropylene. Polym Degrad Stab 97(4):541–546

    Article  CAS  Google Scholar 

  23. Sahoo S, Misra M, Mohanty AK (2014) Biocomposites from switchgrass and lignin hybrid and poly(butylene succinate) bioplastic: studies on reactive compatibilization and performance evaluation. Macromol Mater Eng 299(2):178–189

    Article  CAS  Google Scholar 

  24. Sahoo S, Misra M, Mohanty AK (2012) Effect of compatibilizer and fillers on the properties of injection molded lignin-based hybrid green composites. J Appl Polym Sci 127(5):4110–4121

    Article  CAS  Google Scholar 

  25. Zhang C, Wang W, Huang Y, Pan Y, Jiang L, Dan Y, Luo Y, Peng Z (2013) Thermal, mechanical and rheological properties of polylactide toughened by epoxidized natural rubber. Mater Des 45:198–205

    Article  CAS  Google Scholar 

  26. Tanrattanakul V, Sungthong N, Raska P (2008) Rubber toughening of Nylon 6 with epoxidized natural rubber. Polym Test 27:794–800

    Article  CAS  Google Scholar 

  27. Parulekar Y, Mohanty AK (2006) Biodegradable toughened polymers from renewable resources: blends of polyhydroxybutyrate with epoxidized natural rubber and maleated polybutadiene. Green Chem 8:206–213

    Article  CAS  Google Scholar 

  28. Lee H, Ismail J, Kammer H, Bakar M (2004) Melt reaction in blends of poly(3-hydroxybutyrate) (PHB) and epoxidized natural rubber (ENR-50). J Appl Polym Sci 95(1):113–129

    Article  CAS  Google Scholar 

  29. Balakrishnan H, Attaran SA, Imran M, Hassan. A, Wahit MU (2014) Epoxidized natural rubber-toughened polypropylene/organically modified montmorillonite nanocomposites. J Thermoplast Compos Mater 27(2):233–250

    Article  CAS  Google Scholar 

  30. Yang H, Wolcott M, Kim H, Kim HJ (2005) Thermal properties of lignocellulosic filler-thermoplastic polymer biocomposites. J Therm Anal Calorim 82:157–160

    Article  CAS  Google Scholar 

  31. Kubo S, Kadla JF (2003) The formation of strong intermolecular interactions in immiscible blends of poly(vinyl alchohol) (PVA) and lignin. Biomacromolecules 4(3):561–567

    Article  CAS  PubMed  Google Scholar 

  32. Elias L, Fenouillot F, Majeste JC, Cassagnau PH (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48(20):6029–6040

    Article  CAS  Google Scholar 

  33. Zhang K, Misra M, Mohanty AK (2014) Toughened sustainable green composites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based ternary blends and miscanthus biofiber. ACS Sustain Chem Eng 2:2345–2354

    Article  CAS  Google Scholar 

  34. Aoyagi Y, Yamashita K, Doi Y (2002) Thermal degradation of poly[3-hydroxybutyrate], poly[ε-caprolactone], and poly[(s)-lactide]. Polym Degrad Stab 76:53–59

    Article  CAS  Google Scholar 

  35. Faravelli T, Frassoldati A, Migliavacca G, Ranzi E (2010) Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34:290–301

    Article  CAS  Google Scholar 

  36. Sahoo S, Seydibeyoğlu M.Ö., Mohanty AK, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy 35:4230–4237

    Article  CAS  Google Scholar 

  37. Hamzah R, Bakar MA, Khairuddean M, Mohammed IA, Adnan R (2012) A structural study of epoxidized natural rubber (ENR-50) and it’s cyclic dithiocarbonate derivative using NMR spectroscopy techniques. Molecules 17:10974–10993

    Article  CAS  PubMed  Google Scholar 

  38. Venkatanarashimhan S, Raghavachari D (2013) Epoxidized natural rubber-magnetite nanocomposites for oil spill recovery. J Mater Chem A 1:868–876

    Article  Google Scholar 

  39. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273:381–387

    Article  CAS  PubMed  Google Scholar 

  40. Aranguren MI, Mora E, DeGroot JV, Macosko CW (1992) Effect of reinforcing fillers on the rheology of polymer melts. J Rheol 36:1165–1182

    Article  CAS  Google Scholar 

  41. Huang HX, Zhang JJ (2009) Effects of filler-filler and polymer-filler interactions on rheological and mechanical properties of HDPE-wood composites. J Appl Polym Sci 111(6):2806–2812

    Article  CAS  Google Scholar 

  42. Zhang N, Wang Q, Ren J, Wang L (2009) Preparation and properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci 44:250–256

    Article  CAS  Google Scholar 

  43. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97(10):1898–1914

    Article  CAS  Google Scholar 

  44. Chan H, Kammer H (2009) Thermal properties of blends comprising poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and epoxidized natural rubber. Polym Bull 63:673–686

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the Natural Sciences and Engineering Research Council (NSERC), Canada NSERC Lignoworks strategic network to carry out this work is gratefully acknowledged. The authors would also like to extend sincerest gratitude to Vidhya Nagarajan of the University of Guelph for editorial assistance and input during the manuscript writing process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar K. Mohanty.

Additional information

Mohamed Abdelwahab—On leave from Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, B., Abdelwahab, M., Misra, M. et al. Injection-Molded Bioblends from Lignin and Biodegradable Polymers: Processing and Performance Evaluation. J Polym Environ 26, 2360–2373 (2018). https://doi.org/10.1007/s10924-017-1132-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1132-0

Keywords

Navigation