Skip to main content
Log in

Sorption of Some Rare Earth Elements from Acidic Solution onto Poly(acrylic acid–co-acrylamide/16, 16-dimethylheptadecan-1-amine) Composite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, Acrylic acid (AA), acrylamide (AM), and 16,16-dimethylheptadecan-1-amine (PJM-T) were copolymerized using gamma irradiation with 60Co γ-rays at a dose of 25 KGy to form a novel composite; Poly(acrylic acid-co-acrylamide/16,16-dimethylheptadecan-1-amine P(AA-co-AM/PJM-T). P(AA-co-AM/PJM-T) is characterized by different physicochemical techniques and used as a sorbent for rare earth elements from monazite. The optimum pH for the sorption process at 25 ℃ is 4.5 and the equilibrium attained at 60 min. Different kinetics and isothermal models is applied. The maximum adsorption capacity is 182.15 ± 3.73 mg g−1 at 25 ℃. The sorption reaction regulates a pseudo 2nd order mechanism and the process is spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

All the data used for this work are publicly available.

References

  1. An F, Gao B, Huang X, Zhang Y, Li Y, Xu Y, Zhang Z, Gao J, Chen Z (2013) Selectively removal of Al (III) from Pr(III) and Nd(III) rare earth solution using surface imprinted polymer. React Funct Polym 73(1):60–65. https://doi.org/10.1016/j.reactfunctpolym.2012.08.022

    Article  CAS  Google Scholar 

  2. Celik I, Kara D, Karadas C, Fisher A, Hill SJ (2015) A novel ligandless-dispersive liquid–liquid microextraction method for matrix elimination and the preconcentration of rare earth elements from natural waters. Talanta 134:476–481. https://doi.org/10.1016/j.talanta.2014.11.063

    Article  CAS  PubMed  Google Scholar 

  3. Unal YS, Eroglu AE, Shahwan T (2013) Removal of aqueous rare earth elements (REEs) using nano-iron based materials. J Ind Eng Chem 19:898–907. https://doi.org/10.1016/j.jiec.2012.11.005

    Article  CAS  Google Scholar 

  4. Yon H, Kim C, Chung K, Kim S, Lee J, Kumar JR (2016) Solvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: waste recycling strategies for permanent magnet processing. Hydrometallurgy 165(1):27–43. https://doi.org/10.1016/j.hydromet.2016.01.028

    Article  CAS  Google Scholar 

  5. Parhi PK, Park KH, Nam CW, Park JT (2015) Liquid–liquid extraction and separation of total rare earth (RE) metals from polymetallic manganese nodule leaching solution. J Rare Earths 33:207–213. https://doi.org/10.1016/S1002-0721(14)60404-X

    Article  CAS  Google Scholar 

  6. Ashour RM, Abdel-Magied AF, Abdel-khalek AA, Helaly OS, Ali MM (2016) Preparation and characterization of magnetic iron oxide nanoparticles functionalized by l-cysteine: adsorption and desorption behavior for rare earth metal ions. J Environ Chem Eng 4:3114–3121. https://doi.org/10.1016/j.jece.2016.06.022

    Article  CAS  Google Scholar 

  7. Ashour RM, El-sayed R, Abdel-Magied AF, Abdel-khalek AA, Ali MM, Forsberg K, Uheida A, Muhammed M, Dutta J (2017) Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: kinetic and thermodynamic studies. Chem Eng J 327:286–296. https://doi.org/10.1016/j.cej.2017.06.101

    Article  CAS  Google Scholar 

  8. Gok C (2014) Neodymium and samarium recovery by magnetic nano-hydroxyapatite. J Radioanal Nucl Chem 301:641–651. https://doi.org/10.1007/s10967-014-3193-z

    Article  CAS  Google Scholar 

  9. Liang P, Liu Y, Guo L (2005) Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes. Spectrochim Acta B 60:125–129. https://doi.org/10.1016/j.sab.2004.11.010

    Article  CAS  Google Scholar 

  10. Goodenough KM, Wall F, Merriman D (2018) The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat Resour Res 27:201

    Article  CAS  Google Scholar 

  11. Lima AT, Ottosen L (2021) Recovering rare earth elements from contaminated soils: critical overview of current remediation technologies. Chemosphere 265:129163. https://doi.org/10.1016/j.chemosphere.2020.129163

    Article  CAS  PubMed  Google Scholar 

  12. Tianchi L, Ji C (2021) Extraction and separation of heavy rare earth elements (2021) a review. Sep Purif Technol 276:119263. https://doi.org/10.1016/j.seppur.2021.119263

    Article  CAS  Google Scholar 

  13. Quijada-Maldonado E, Romero J (2021) Solvent extraction of rare-earth elements with ionic liquids: toward a selective and sustainable extraction of these valuable elements. Curr Opin Green Sustain Chem 27:2452–2236. https://doi.org/10.1016/j.cogsc.2020.100428

    Article  Google Scholar 

  14. Ang KL, Li D, Nikoloski AN (2017) The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 1. Anionic and Cationic Resins Hydrometall 174:147–155

    Article  CAS  Google Scholar 

  15. Elkhansa E, Afnan M, MhdAmmar H, Alaa H (2021) Recovery of rare earth elements from waste streams using membrane processes: an overview. Hydrometallurgy 204:105706. https://doi.org/10.1016/j.hydromet.2021.105706

    Article  CAS  Google Scholar 

  16. Xu X, Jiang X, Jiao F, ChenX YuJ (2018) Tunable assembly of porous three-dimensional graphene oxide-corn zein composites with strong mechanical properties for adsorption of rare earth elements. J Taiwan Inst Chem Eng 85:106–114

    Article  CAS  Google Scholar 

  17. Gupta NK, Gupta A, Ramteke P, Sahoo H, Sengupta A (2019) Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: a review. J Mol Liq 274:48–164. https://doi.org/10.1016/j.molliq.2018.10.134

    Article  CAS  Google Scholar 

  18. Veliscek-Carolan J, Jolliffe K, Hanley T (2013) Selective sorption of actinides by Titania nanoparticles covalently functionalized with simple organic ligands. Appl Mater Interfaces 5(22):11984–11994. https://doi.org/10.1021/am403727x

    Article  CAS  Google Scholar 

  19. Desouky OA, Daher AM, Abdel-Monem YK, Galhoum AA (2009) Liquid–liquid extraction of yttrium using primene-JMT from acidic sulfate solutions. Hydrometallurgy 96(4):313–317. https://doi.org/10.1016/j.hydromet.2008.11.009

    Article  CAS  Google Scholar 

  20. Janczura M, Luliński P, Sobiech M (2021) Imprinting technology for effective sorbent fabrication: current state-of-art and future prospects. Materials 14(8):1850. https://doi.org/10.3390/ma14081850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. García-Otero N, Teijeiro-Valiño C, Otero-Romaní J, Peña-Vázquez E, Moreda-Piñeiro A, Bermejo-Barrera P (2009) On-line ionic imprinted polymer selective solid-phase extraction of nickel and lead from seawater and their determination by inductively coupled plasma-optical emission spectrometry. Anal Bioanal Chem 395(4):1107–1115. https://doi.org/10.1007/s00216-009-3044-x

    Article  CAS  PubMed  Google Scholar 

  22. Li-pan JIA, Jiang-kiang H, Ze-long MA, Xu-heng LIU, Xing-yu C, Jiang-tao LI, Li-hua HE, Zhong-wei Z (2020) Research and development trends of hydrometallurgy: an overview based on hydrometallurgy literature from 1975 to 2019. Trans Nonferrous Metals Soc China 30(11):1003–6326. https://doi.org/10.1016/S1003-6326(20)65450-4

    Article  Google Scholar 

  23. Han Z, Xiao-Kun O, Li-Ye Y (2021) Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber–sodium alginate hydrogel beads. J Mol Liq 324:115122. https://doi.org/10.1016/j.molliq.2020.115122

    Article  CAS  Google Scholar 

  24. Xu X, Ouyang X, Yang LY (2020) Adsorption of Pb (II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.114523

    Article  Google Scholar 

  25. Zhang H, Omer AM, Hu Z, Yang LY, Ji C, Ouyang X (2019) Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (II) adsorption. Int J Biol Macromol 135:490–500. https://doi.org/10.1016/j.ijbiomac.2019.05.185

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Wang A (2010) Adsorption characteristics of chitosan-gPoly (acrylic acid) hydrogel composite for Hg (II) ions from aqueous solution. Sep Sci Technol 45:2086–2094

    Article  CAS  Google Scholar 

  27. Rivas BL, Peric IM, Munoz C, Alvear R (2011) Poly (Nhydroxymethyl acrylamide-co-acrylic acid) and poly (N-hydroxymethyl acrylamide –co acrylamidoglycolic acid): synthesis, characterization, and metal ion removal properties. Polym Bull 68:391–403. https://doi.org/10.1007/s00289-011-0551-7

    Article  CAS  Google Scholar 

  28. Guclu G, Al E, Emik S, Iyim TB, Ozgumus S, Ozyurek M (2010) Removal of Cu2+ and Pb2+ ions from aqueous solutions by starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym Bull 65:333–346. https://doi.org/10.1007/s00289-009-0217-x

    Article  CAS  Google Scholar 

  29. Cavus S, Gurdag G, Sozgen K, Gurkaynaka MA (2009) The preparation and characterization of poly (acrylic acid-co-methacrylamide) gel and its use in the non-competitive heavy metal removal. Polym Adv Technol 20:165–172. https://doi.org/10.1002/pat.1248

    Article  CAS  Google Scholar 

  30. Wei J, Xiao Y, Yang C, Cai Y, Luo W, Luo T, Li H, Yang Z (2021) Dense polyacrylic acid-immobilized polypropylene non-woven fabrics prepared via UV-induced photo graft technique for the recovery of rare earth ions from aqueous solution. J Polym Environ. https://doi.org/10.1007/s10924-021-02068-8

    Article  Google Scholar 

  31. Attallah MF, Allan KF, Mahmoud MR (2016) Synthesis of poly (acrylic acid–maleic acid) SiO2/Al2O3 as novel composite material for cesium removal from acidic solutions. J Radioanal Nucl Chem 307(2):1231–1241

    Article  CAS  Google Scholar 

  32. Vincent B, Julien M, Alain G, Xianyu D, Jean-Jacques R, Sophie M (2020) Acidic polymeric sorbents for the removal of metallic pollution in water: a review. React Funct Polym 152:104599. https://doi.org/10.1016/j.reactfunctpolym.2020.104599

    Article  CAS  Google Scholar 

  33. Cheremisinoff P (1997) Handbook of engineering polymeric materials, 1st edn. CRC Press, Boca Raton. https://doi.org/10.1201/9781482292183

    Book  Google Scholar 

  34. Heidari S, Esmaeilzadeh F, Mowla D, Ghasemi S (2018) Synthesis of an efficient copolymer of acrylamide and acrylic acid and determination of its swelling behavior. J Petrol Explor Prod Technol 8:1331–1340. https://doi.org/10.1007/s13202-017-0428-x

    Article  CAS  Google Scholar 

  35. Labib SH, Shahr El-Din AM, Allan KF, Attallah MF (2020) Synthesis of highly defcient nano SrCoOx for the purifcation of lanthanides from monazite concentrate. J Radioanal Nucl Chem 323:1179–1188. https://doi.org/10.1007/s10967-020-07031-w

    Article  CAS  Google Scholar 

  36. Hassan HS, Attia LamisA, Dakroury GA (2020) Exploration of the parameters affecting the radioactive europium removal from aqueous solutions by activated carbon-epoxy composite. Appl Radiat Isot 164:109278. https://doi.org/10.1016/j.apradiso.2020.109278

    Article  CAS  PubMed  Google Scholar 

  37. Lagergren S (1898) About the theory of so-called adsorption of soluble substance. Kungliga Svenska Vetenskaps-Akademiens Handlingar 24:1–39

    Google Scholar 

  38. McKay G, Ho YS (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  Google Scholar 

  39. Cheung CW, Porter JF, Mckay G (2000) Sorption kinetics for the removal of copper and zinc from effluents using bone char. J Sep Purif Technol 19(1–2):55–64 https://doi.org/10.1016/S1383-5866(99)00073-8

    Article  CAS  Google Scholar 

  40. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60

    Article  Google Scholar 

  41. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  42. Weidner E, Ciesielczyk F (2019) Removal of hazardous oxyanions from the environment using metal-oxide-based. Materials 12:927

    Article  CAS  Google Scholar 

  43. Foo KY, Hameed BH (2010) Review: insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  44. Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133(1–3):304–308

    Article  CAS  Google Scholar 

  45. Todica M, Razvan S, Pop C, Loredana O (2015) IR and Raman investigation of some poly(acrylic) acid gels in aqueous and neutralized state. Acta Physica Polonica A 128:128–135. https://doi.org/10.1693/APhysPolA.128.128

    Article  CAS  Google Scholar 

  46. Shahid SA, Qidwai AA, Anwar F, Ullah I, Rashid U (2012) Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic Acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material. Molecules 17(8):9397–9412. https://doi.org/10.3390/molecules17089397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu Y, Wang Z, Ouyang X, Ji C, Liu Y, Huang F, Yang L (2019) Fabrication of cross-linked chitosan beads grafted by polyethylenimine for efficient adsorption of diclofenac sodium from water. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.10.044

    Article  PubMed  Google Scholar 

  48. Chalal S, Haddadine N, Bouslah N, Benaboura A (2012) Preparation of Poly (acrylic acid)/silver nanocomposite by simultaneous polymerization-reduction approach for antimicrobial application. J Polym Res. https://doi.org/10.1007/s10965-012-0024-1

    Article  Google Scholar 

  49. Moharram M, Mousa A (2007) Study of the interaction of poly (acrylic acid) and poly (acrylic acid-poly acrylamide) complex with bone powders and hydroxyapatite by using TGA and DSC. J Appl Polym Sci 105:3220–3227. https://doi.org/10.1002/app.26267

    Article  CAS  Google Scholar 

  50. Xiong C, Liu X, Yao C (2008) Effect of pH on sorption for RE (III) and sorption behaviors of Sm (III) by D152 resin. J Rare Earths 26:851–856. https://doi.org/10.1016/S1002-0721(09)60020-X

    Article  Google Scholar 

  51. Puigdomenech I (2013) Make equilibrium diagrams using sophisticated algorithms (MEDUSA). In: Inorganic chemistry. Royal Institute of Technology, Stockholm, Sweden. http://www.kemi.kth.se/medusa. https://sites.google.com/site/chemdiagr/

  52. Hendy A, Khozamy E, Mahmoud G, Saad E, Serror S (2019) Implementation of carboxymethyl cellulose/acrylic acid/titanium dioxide nanocomposite hydrogel in remediation of Cd(II), Zn(II) and Pb(II) for water treatment application. Egypt J Chem 62(10):1785–1798. https://doi.org/10.21608/ejchem.2019.11622.1739

    Article  Google Scholar 

  53. Akpomie KG, Dawodu FA, Adebowale KO (2015) Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alex Eng J 54:757–767. https://doi.org/10.1016/j.aej.2015.03.025ISSN1110-0168

    Article  Google Scholar 

  54. Ouyang D, Zhuo Y, Hu L, Zeng Q, Hu Y, He Z (2019) Research on the adsorption behavior of heavy metal ions by porous material Prepared with silicate tailings. Minerals 9(5):291. https://doi.org/10.3390/min9050291

    Article  CAS  Google Scholar 

  55. Ponou O, Wang LP, Dodbiba G, Okaya K, Fujita T, Mitsuhashi K, Atarashi T, Satoh G, Noda M (2014) Recovery of rare earth elements from aqueous solution obtained from Vietnamese clay minerals using dried and carbonized parachlorella. J Environ Chem Eng 2:1070–1081. https://doi.org/10.1016/j.jece.2014.04.002

    Article  CAS  Google Scholar 

  56. Coppin F, Berger G, Bauer A, Castet S, Loubet M (2002) Sorption of lanthanides on smectite and kaolinite. Chem Geol 182:57–68. https://doi.org/10.1016/S0009-541(01)00283-2

    Article  CAS  Google Scholar 

  57. Shan X, Lian J, Wen B (2002) Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere 47(7):701–710

    Article  CAS  Google Scholar 

  58. Zglinicki K, Szamałek K, Wołkowicz S (2021) Critical minerals from post-processing tailing. A case study from Bangka Island Indonesia. Minerals 11(4):352. https://doi.org/10.3390/min11040352

    Article  CAS  Google Scholar 

  59. Cao X, Wang Q, Wang S, Man R (2020) Preparation of a novel polystyrene-poly(hydroxamic acid) copolymer and its adsorption properties for rare earth metal ions. Polymers 12(9):1905. https://doi.org/10.3390/polym12091905

    Article  CAS  PubMed Central  Google Scholar 

  60. Gallardo K, Castillo R, Mancilla N, Remonsellez F (2020) Biosorption of rare-earth elements from aqueous solutions using walnut shell. Front Chem Eng. https://doi.org/10.3389/fceng.2020.00004

    Article  Google Scholar 

  61. Negrea A, Gabor A, Davidescu CM, Ciopec M, Negrea P, Duteanu N, Barbulescu A (2018) Rare earth elements removal from water using natural polymers. Sci Rep. https://doi.org/10.1038/s41598-017-18623

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhao L, Duan X, Azhar MR, Sun H, Fang X, Wang S (2020) Selective adsorption of rare earth ions from aqueous solution on metal-organic framework HKUST-1. Chem Eng J Adv. https://doi.org/10.1016/j.ceja.2020.100009

    Article  Google Scholar 

  63. Kosheleva A, Atamaniuk I, Politaeva N, Kuchta K (2018) Adsorption of rare earth elements using bio-based sorbents. MATEC Web Conf 245:18001. https://doi.org/10.1051/matecconf/201824518001

    Article  CAS  Google Scholar 

  64. Babua C, Binnemans K, Roosen J (2018) EDTA-functionalized activated carbon for the adsorption of rare earths from aqueous solutions. Ind Eng Chem Res 57(5):1487–1497. https://doi.org/10.1021/acs.iecr.7b04274

    Article  CAS  Google Scholar 

  65. Dupont D, Brullot W, Bloemen M, Verbiest TM, Binnemans K (2014) Selective uptake of rare earths from aqueous solutions by EDTA functionalized magnetic and nonmagnetic nanoparticles. ACS Appl Mater Interfaces 6(7):4980–4988. https://doi.org/10.1021/am406027y

    Article  CAS  PubMed  Google Scholar 

  66. Li J, Gong A, Li F, Qiu L, Zhang W, Gao G, Liu Y, Li J (2018) Synthesis and characterization of magnetic mesoporous Fe3O4@mSiO2–DODGA nanoparticles for adsorption of 16 rare earth elements. RSC Adv 8(68):39149–39161. https://doi.org/10.1039/c8ra07762b

    Article  CAS  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, Material preparation, data collection and analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to G. A. Dakroury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The authors confirm that the manuscript has been read and approved by all authors. The authors declare that this manuscript has not been published and not under consideration for publication elsewhere.

Consent to Participate

All of the authors consented to participate in the drafting of this manuscript.

Consent for Publication

All of the authors consent to publish this manuscript.

Research Involving Human Participants and/or Animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.H., Dakroury, G.A., Hagag, M.S. et al. Sorption of Some Rare Earth Elements from Acidic Solution onto Poly(acrylic acid–co-acrylamide/16, 16-dimethylheptadecan-1-amine) Composite. J Polym Environ 30, 1170–1188 (2022). https://doi.org/10.1007/s10924-021-02271-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02271-7

Keywords

Navigation