Skip to main content

Advertisement

Log in

A Comprehensive Review on the Heavy Metal Removal for Water Remediation by the Application of Lignocellulosic Biomass-Derived Nanocellulose

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present review describes the application of lignocellulosic biomass-derived nanocellulose for wastewater remediation with a focus on the removal of heavy metals. Nanocellulose and its nanocomposite are among the emerging materials of this century, with an abundance of application in the versatile field of composites, medicines, functional additives, and water treatment. Water treatment has received attention from the commercial and academic sector, with a large emphasis on one of the biggest problems faced by humans in the 21st century i.e., clean potable water. There are various sources of water pollution including heavy metal toxifications. The applications of cellulose and its various composites for heavy metal removal for wastewater treatment have been elaborated on in this review. Several biosorbent based on nanocellulose such as aerogels, hydrogels, ion-exchange beds, flocculants, and photocatalyst to remove heavy metal toxicity have been discussed furthermore. Research work on the effect of composites of carbon nanotube, functionalized cellulose has been covered too.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from the permission with Zhang et al. [18]

Fig. 2

Adapted from the permission with Phanthong et al. [8]

Fig. 3

Adapted from the permission with Voisin et al. [34]

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Literathy P (1996) Industrial wastes and water pollution. In Regional Approaches to Water Pollution in the Environment (pp. 21–32). Springer, Dordrecht.

  2. Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites: a review. Biotechnol Rep 21:e00316

    Google Scholar 

  3. Chen H, Sharma SK, Sharma PR, Yeh H, Johnson K, Hsiao BS (2019) Arsenic (iii) removal by nanostructured dialdehyde cellulose–cysteine microscale and nanoscale fibers. ACS Omega 4(26):22008–22020

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Grenni P, Caracciolo AB, Mariani L, Cardoni M, Riccucci C, Elhaes H, Ibrahim MA (2019) Effectiveness of a new green technology for metal removal from contaminated water. Microchem J 147:1010–1020

    CAS  Google Scholar 

  5. Yang J, Hou B, Wang J, Tian B, Bi J, Wang N, Li X, Huang X (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomater. https://doi.org/10.3390/nano9030424

    Article  Google Scholar 

  6. Mok CF, Ching YC, Osman NAA, Muhamad F, Dai Hai N, Choo JH, Hassan CR (2020) Adsorbents for removal of cationic dye: nanocellulose reinforced biopolymer composites. J Polym Res 27(12):1–15

    Google Scholar 

  7. Tasrin S, Fazil SMM, Senthilmurugan S, Selvaraju N (2021) Facile preparation of nanocellulose embedded polypyrrole for dye removal: unary and binary process optimization and seed toxicity. Int J Environ Sci Technol 18(2):365–378

    CAS  Google Scholar 

  8. Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G (2018) Nanocellulose: extraction and application. Carbon Res Convers 1(1):32–43

    Google Scholar 

  9. Malik DS, Jain CK, Yadav AK (2017) Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Appl Water Sci 7(5):2113–2136

    CAS  Google Scholar 

  10. Sharma A, Mandal T, Goswami S (2017) Cellulose nanofibers from rice straw: Process development for improved delignification and better crystallinity index. Trends Carbohydrate Res 9

  11. Tshikovhi A, Mishra SB, Mishra AK (2020) Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol 152:616–632. https://doi.org/10.1016/j.ijbiomac.2020.02.221

    Article  CAS  PubMed  Google Scholar 

  12. Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol - Compos Sci Technol 67:2521–2527. https://doi.org/10.1016/j.compscitech.2006.12.015

    Article  CAS  Google Scholar 

  13. Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites. Ind Crops Prod 71:44–53

    CAS  Google Scholar 

  14. Yang H, Sheikhi A, van de Ven TGM (2016) Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir 32:11771–11779. https://doi.org/10.1021/acs.langmuir.6b03084

    Article  CAS  PubMed  Google Scholar 

  15. Langan P, Petridis L, O’Neill HM, Pingali SV, Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S, Heller WT, Urban V, Evans BR, Gnanakaran S, Ragauskas AJ, Smith JC, Davison BH (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63–68. https://doi.org/10.1039/C3GC41962B

    Article  CAS  Google Scholar 

  16. Deng S, zhang G, Chen S, Xue Y, Du Z, Wang P (2016) Rapid and effective preparation of a HPEI modified biosorbent based on cellulose fiber with a microwave irradiation method for enhanced arsenic removal in water. J Mater Chem A 4:15851–15860. https://doi.org/10.1039/C6TA06051J

    Article  CAS  Google Scholar 

  17. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5(3):2782–2799

    CAS  Google Scholar 

  18. Zhang X, Lei H, Chen S, Wu J (2016) Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chem 18:4145–4169. https://doi.org/10.1039/C6GC00911E

    Article  CAS  Google Scholar 

  19. Sag Y, Kutsal T (2001) Recent trends in the biosorption of heavy metals: a review. Biotechnol Bioprocess Eng 6(6):376

    CAS  Google Scholar 

  20. Bilal M, Rasheed T, Sosa-Hernández JE, Raza A, Nabeel F, Iqbal H (2018) Biosorption: an interplay between marine algae and potentially toxic elements—a review. Mar Drugs 16(2):65

    PubMed Central  Google Scholar 

  21. Park JB, Lakes RS (1992) Introduction to biomaterials. In Biomaterials (pp. 1–6). Springer, Boston, MA.

  22. Bashir A, Manzoor T, Malik LA, Qureashi A, Pandith AH (2020) Enhanced and selective adsorption of Zn(II), Pb(II), Cd(II), and Hg(II) ions by a dumbbell- and flower-shaped potato starch phosphate polymer: a combined experimental and DFT calculation study. ACS Omega 5:4853–4867

    CAS  PubMed  PubMed Central  Google Scholar 

  23. An B, Zhao D (2012) Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles. J Hazard Mater 211–212:332–341. https://doi.org/10.1016/j.jhazmat.2011.10.062

    Article  CAS  PubMed  Google Scholar 

  24. Mansouri J, Harrisson S, Chen V (2010) Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. J Mater Chem 20:4567–4586. https://doi.org/10.1039/B926440J

    Article  CAS  Google Scholar 

  25. Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197. https://doi.org/10.1007/s10570-017-1194-0

    Article  CAS  Google Scholar 

  26. Thakur M, Sharma A, Ahlawat V, Bhattacharya M, Goswami S (2020) Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose. Mater Sci Energy Technol 3:328–334

    CAS  Google Scholar 

  27. Sharma A, Mandal T, Goswami S (2020) Dispersibility and stability studies of cellulose nanofibers: implications for nanocomposite preparation. J Polymers Environ 1–10

  28. Zhang X, Elsayed I, Navarathna C, Schueneman GT, Hassan EIB (2019) Biohybrid Hydrogel And Aerogel From Self-Assembled Nanocellulose And Nanochitin As A High-Efficiency Adsorbent For Water Purification. ACS Appl Mater Interfaces 11:46714–46725. https://doi.org/10.1021/acsami.9b15139

    Article  CAS  PubMed  Google Scholar 

  29. Nascimento DM, Nunes YL, Figueirêdo MC, de Azeredo HM, Aouada FA, Feitosa JP, Dufresne A (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20(11):2428–2448

    CAS  Google Scholar 

  30. Fiorati A, Negrini NC, Baschenis E, Altomare L, Faré S, Schieroni AG, Piovani D, Mendichi R, Ferro M, Castiglione F, Mele A, Punta C, Melone L (2020) TEMPO-nanocellulose/Ca2+ hydrogels: ibuprofen drug diffusion and in vitro cytocompatibility. Materials (Basel) 13:183. https://doi.org/10.3390/ma13010183

    Article  CAS  PubMed Central  Google Scholar 

  31. Maestri CA, Motta A, Moschini L, Bernkop-Schnürch A, Baus RA, Lecca P, Scarpa M (2020) Composite nanocellulose-based hydrogels with spatially oriented degradation and retarded release of macromolecules. J Biomed Mater Res, Part A 108(7):1509–1519

    CAS  Google Scholar 

  32. Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9:2479–2498. https://doi.org/10.3762/bjnano.9.232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koshani R, Tavakolian M, van de Ven TGM (2020) Cellulose-based dispersants and flocculants. J Mater Chem B 8:10502–10526. https://doi.org/10.1039/D0TB02021D

    Article  CAS  PubMed  Google Scholar 

  34. Voisin H, Bergström L, Liu P, Mathew AP (2017) Nanocellulose-based materials for water purification. Nanomater (Basel Switzerland). https://doi.org/10.3390/nano7030057

    Article  Google Scholar 

  35. Khulbe KC, Matsuura T (2021) Membrane applications. In Nanotechnology in Membrane Processes (pp. 199–343). Springer, Cham

  36. Li Y, Cao L, Li L, Yang C (2015) In situ growing directional spindle TiO2 nanocrystals on cellulose fibers for enhanced Pb(2+) adsorption from water. J Hazard Mater 289:140–148. https://doi.org/10.1016/j.jhazmat.2015.02.051

    Article  CAS  PubMed  Google Scholar 

  37. Jamshaid A, Hamid A, Muhammad N, Naseer A, Ghauri M, Iqbal J, Shah NS (2017) Cellulose-based materials for the removal of heavy metals from wastewater–an overview. ChemBioEng Rev 4(4):240–256

    CAS  Google Scholar 

  38. Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G (2017) Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J Hazard Mater 336, 146–157. https://doi.org/10.1016/j.jhazmat.2017.02.059

  39. Abouzeid RE, Khiari R, El-Wakil N, Dufresne A (2019) Current state and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromol 20:573–597. https://doi.org/10.1021/acs.biomac.8b00839

    Article  CAS  Google Scholar 

  40. Baruah J, Chaliha C, Kalita E, Nath BK, Field RA, Deb P (2020) Modelling and optimization of factors influencing adsorptive performance of agrowaste-derived Nanocellulose Iron Oxide Nanobiocomposites during remediation of Arsenic contaminated groundwater. Int J Biol Macromol 164:53–65. https://doi.org/10.1016/j.ijbiomac.2020.07.113

    Article  CAS  PubMed  Google Scholar 

  41. Anirudhan TS, Shainy F, Deepa JR (2019) Effective removal of Cobalt(II) ions from aqueous solutions and nuclear industry wastewater using sulfhydryl and carboxyl functionalised magnetite nanocellulose composite: batch adsorption studies. Chem Ecol 35:235–255. https://doi.org/10.1080/02757540.2018.1532999

    Article  CAS  Google Scholar 

  42. Sharma PR, Sharma SK, Antoine R, Hsiao BS (2019) Efficient removal of arsenic using zinc oxide nanocrystal-decorated regenerated microfibrillated cellulose scaffolds. ACS Sustain Chem Eng 7(6):6140–6151

    CAS  Google Scholar 

  43. Sharma PR, Chattopadhyay A, Sharma SK, Geng L, Amiralian N, Martin D, Hsiao BS (2018) Nanocellulose from spinifex as an effective adsorbent to remove cadmium(II) from water. ACS Sustain Chem Eng 6:3279–3290. https://doi.org/10.1021/acssuschemeng.7b03473

    Article  CAS  Google Scholar 

  44. Sharma PR, Chattopadhyay A, Zhan C, Sharma SK, Geng L, Hsiao BS (2018) Lead removal from water using carboxycellulose nanofibers prepared by nitro-oxidation method. Cellulose 25(3):1961–1973

    CAS  Google Scholar 

  45. Sun C, Ni J, Zhao C, Du J, Zhou C-E, Wang S, Xu C (2017) Preparation of a cellulosic adsorbent by functionalization with pyridone diacid for removal of Pb(II) and Co(II) from aqueous solutions. Cellulose. https://doi.org/10.1007/s10570-017-1519-z

    Article  Google Scholar 

  46. Liu P, Borrell PF, Božič M, Kokol V, Oksman K, Mathew AP (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 294:177–185. https://doi.org/10.1016/j.jhazmat.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  47. Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimaa J, Sillanpää M (2014) Adsorption of Ni (II), Cu (II) and Cd (II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21(3):1471–1487

    CAS  Google Scholar 

  48. Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew P, A. (2014) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose. https://doi.org/10.1007/s10570-013-0139-5

    Article  Google Scholar 

  49. Pillai SS, Deepa B, Abraham E, Girija N, Geetha P, Jacob L, Koshy M (2013) Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: Equilibrium and kinetic studies. Ecotoxicol Environ Saf 98:352–360. https://doi.org/10.1016/j.ecoenv.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  50. Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–943. https://doi.org/10.1016/S1001-0742(12)60145-4

    Article  CAS  Google Scholar 

  51. Ma H, Hsiao BS, Chu B (2012) Ultrafine Cellulose Nanofibers as Efficient Adsorbents for Removal of UO22+ in Water. ACS Macro Lett 1:213–216. https://doi.org/10.1021/mz200047q

    Article  CAS  Google Scholar 

  52. Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H (2009) Adsorption of Cu (II) and Pb (II) onto diethylenetriamine-bacterial cellulose. Carbohyd Polym 75(1):110–114

    CAS  Google Scholar 

  53. Tao H, Lavoine N, Jiang F, Tang J, Lin N (2020) Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges. Nanoscale horizons 5(4):607–627

    CAS  PubMed  Google Scholar 

  54. Olivera S, Muralidhara HB, Venkatesh K, Guna VK, Gopalakrishna K, Kumar Y (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohyd Polym 153:600–618

    CAS  Google Scholar 

  55. Guo X, Xu D, Yuan H, Luo Q, Tang S, Liu L, Wu Y (2019) A novel fluorescent nanocellulosic hydrogel based on carbon dots for efficient adsorption and sensitive sensing in heavy metals. J Mater Chem A 7(47):27081–27088

    CAS  Google Scholar 

  56. Ahmad M, Ahmed S, Swami B, Ikram S (2015) Adsorption of heavy metal ions: role of chitosan and cellulose for water treatment. Int J Pharmacogn 2: 280–289. https://doi.org/10.13040/IJPSR.0975-8232.IJP.2(6).280-89

  57. Zhou Y, Wang X, Zhang M, Jin Q, Gao B, Ma T (2014) Removal of Pb (II) and malachite green from aqueous solution by modified cellulose. Cellulose 21(4):2797–2809

    CAS  Google Scholar 

  58. Vlotman DE, Ngila CJ, Ndlovu T, Malinga SP (2018) Hyperbranched polymer integrated membrane for the removal of arsenic (III) in water. J Membrane Sci Res 4(2):53–62

    CAS  Google Scholar 

  59. Mahalakshmi R, Ravikumar L, Rathina K (2017) A study on the removal of mercury (II) ions from aqueous solution by chemically modified cellulose green adsorbent: Kinetic and equilibrium studies. Rasayan J Chem 10:286–297. https://doi.org/10.7324/RJC.2017.1011633

    Article  CAS  Google Scholar 

  60. Varghese AG, Paul SA, Latha MS (2019) Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ Chem Lett 17:867–877. https://doi.org/10.1007/s10311-018-00843-z

    Article  CAS  Google Scholar 

  61. Wang C, Zhang Y, Liang J, Shan G, Wang Y, Shi Q (2006) Impacts of ascorbic acid and thiamine supplementation at different concentrations on lead toxicity in testis. Clin Chim Acta 370(1–2):82–88

    CAS  PubMed  Google Scholar 

  62. Vaziri ND (2008) Mechanisms of lead-induced hypertension and cardiovascular disease. Am J Physiol-Heart Circul Physiol 295(2):H454–H465

    CAS  Google Scholar 

  63. Mason LH, Harp JP, Han DY (2014) Pb neurotoxicity: neuropsychological effects of lead toxicity. BioMed Res Int 2014

  64. Pant N, Kumar G, Upadhyay AD, Patel DK, Gupta YK, Chaturvedi PK (2014) Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ Sci Pollut Res 21(18):11066–11074

    CAS  Google Scholar 

  65. Mancuso F, Arato I, Lilli C, Bellucci C, Bodo M, Calvitti M, Aglietti MC, dell’Omo M, Nastruzzi C, Calafiore R, Luca G (2018) Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol In Vitro 48:45–52

    CAS  PubMed  Google Scholar 

  66. Lee MY, Bae ON, Chung SM, Kang KT, Lee JY, Chung JH (2002) Enhancement of platelet aggregation and thrombus formation by arsenic in drinking water: a contributing factor to cardiovascular disease. Toxicol Appl Pharmacol 179(2):83–88

    CAS  PubMed  Google Scholar 

  67. Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning–a review. J Environ Sci Health, Part A 41(10):2399–2428

    CAS  Google Scholar 

  68. States JC, Barchowsky A, Cartwright IL, Reichard JF, Futscher BW, Lantz RC (2011) Arsenic toxicology: translating between experimental models and human pathology. Environ Health Perspect 119(10):1356–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Argos M, Ahsan H, Graziano JH (2012) Arsenic and human health: epidemiologic progress and public health implications. Rev Environ Health 27(4):191–195

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295–302

    PubMed  PubMed Central  Google Scholar 

  71. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  72. Martin S, Griswold W (2009) Human health effects of heavy metals. Environ Sci Technol Briefs Citizens 15:1–6

    Google Scholar 

  73. Bernard A (2008) Cadmium & its adverse effects on human health. Indian J Med Res 128(4):557

    CAS  PubMed  Google Scholar 

  74. Karri V, Kumar V, Ramos D, Oliveira E, Schuhmacher M (2018) Comparative in vitro toxicity evaluation of heavy metals (lead, cadmium, arsenic, and methylmercury) on HT-22 hippocampal cell line. Biol Trace Elem Res 184(1):226–239

    CAS  PubMed  Google Scholar 

  75. Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36(2):155–163

    CAS  PubMed  Google Scholar 

  76. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189(1–2):147–163

    CAS  PubMed  Google Scholar 

  77. Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Aspects Med 26(4–5):268–298

    CAS  PubMed  Google Scholar 

  78. Gosens I, Cassee FR, Zanella M, Manodori L, Brunelli A, Costa AL, Bokkers BG, De Jong WH, Brown D, Hristozov D, Stone V (2016) Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology 10(8):1084–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16(12):29592–29630

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165. https://doi.org/10.1016/j.carbpol.2016.03.030

    Article  CAS  PubMed  Google Scholar 

  81. Sun X, Peng B, Ji Y, Chen J, Li D (2009) Chitosan(chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption. AIChE J 55:2062–2069. https://doi.org/10.1002/aic.11797

    Article  CAS  Google Scholar 

  82. Sharma V, Shahnaz T, Subbiah S, Narayanasamy S (2020) New insights into the remediation of water pollutants using nanobentonite incorporated nanocellulose chitosan based aerogel. J Polym Environ 28:2008–2019. https://doi.org/10.1007/s10924-020-01740-9

    Article  CAS  Google Scholar 

  83. Singha AS, Guleria A (2014) Chemical modification of cellulosic biopolymer and its use in removal of heavy metal ions from wastewater. Int J Biol Macromol 67:409–417. https://doi.org/10.1016/j.ijbiomac.2014.03.046

    Article  CAS  PubMed  Google Scholar 

  84. Navarro RR, Sumi K, Fujii N, Matsumura M (1996) Mercury removal from wastewater using porous cellulose carrier modified with polyethyleneimine. Water Res. 30:2488–2494. https://doi.org/10.1016/0043-1354(96)00143-1

    Article  CAS  Google Scholar 

  85. Anirudhan TS, Divya L, Parvathy J (2013) Arsenic adsorption from contaminated water on Fe(III)-coordinated amino-functionalized poly(glycidylmethacrylate)-grafted TiO2-densified cellulose. J Chem Technol Biotechnol 88:878–886. https://doi.org/10.1002/jctb.3916

    Article  CAS  Google Scholar 

  86. Taleb K, Markovski J, Veličković Z, Rusmirović J, Rančić M, Pavlović V, Marinković A (2019) Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size. Arab J Chem 12(8):4675–4693

    CAS  Google Scholar 

  87. Xiong R, Wang Y, Zhang X, Lu C (2014) Facile synthesis of magnetic nanocomposites of cellulose@ultrasmall iron oxide nanoparticles for water treatment. RSC Adv 4:22632–22641. https://doi.org/10.1039/C4RA01397B

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Center of Innovative and Applied Bioprocessing (CIAB), Mohali for equipment and infrastructural facilities. They would like to acknowledge Department of Biotechnology (DBT), India for source of funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saswata Goswami.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Anjana, Rana, H. et al. A Comprehensive Review on the Heavy Metal Removal for Water Remediation by the Application of Lignocellulosic Biomass-Derived Nanocellulose. J Polym Environ 30, 1–18 (2022). https://doi.org/10.1007/s10924-021-02185-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02185-4

Keywords

Navigation